Search results

1 – 10 of 227
Article
Publication date: 4 April 2016

Ming Xiao, Walid Madhat Munief, Fengshun Wu, Rainer Lilischkis, Tobias Oberbillig, Monika Saumer and Weisheng Xia

The purpose of this paper is to fabricate a new Cu-Sn-Ni-Cu interconnection microstructure for electromigration studies in 3D integration.

Abstract

Purpose

The purpose of this paper is to fabricate a new Cu-Sn-Ni-Cu interconnection microstructure for electromigration studies in 3D integration.

Design/methodology/approach

The Cu-Sn-Ni-Cu interconnection microstructure is fabricated by a three-mask photolithography process with different electroplating processes. This microstructure consists of pads and conductive lines as the bottom layer, Cu-Sn-Ni-Cu pillars with the diameter of 10-40 μm as the middle layer and Cu conductive lines as the top layer. A lift-off process is adopted for the bottom layer. The Cu-Sn-Ni-Cu pillars are fabricated by photolithography with sequential electroplating processes. To fabricate the top layer, a sputtered Cu layer is introduced to prevent the middle-layer photoresist from being developed. With the final Cu electroplating processes, the Cu-Sn-Ni-Cu interconnection microstructure is successfully achieved.

Findings

The surface morphology of Cu-Sn pillars consists of densely packed clusters which are formed by an ordered arrangement of tetragonal Sn grains. The diffusion of Cu atoms into the Sn phases is observed at the Cu/Sn interface. Furthermore, the obtained Cu-Sn-Ni-Cu pillars have a flat surface with an average roughness of 13.9 nm. In addition, the introduction of Ni layer between the Sn and the top Cu layers in the Cu-Sn-Ni-Cu pillars can mitigate the diffusion of Cu atoms into Sn phases. The process is verified by checking the electrical performance using four-point probe measurements.

Originality/value

The method described in this paper which combined a three-mask photolithography process with sequential Cu, Sn, Ni and Cu electroplating processes provides a new way to fabricate the interconnection microstructure for future electromigration studies.

Details

Soldering & Surface Mount Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 14 February 2018

Zuozhu Yin, Fenglian Sun, Yang Liu and Yang Liu

The purpose of this paper is to investigate growth kinetics of interfacial Cu-Sn intermetallic compound (IMC) at the solid Cu/liquid Sn interface.

Abstract

Purpose

The purpose of this paper is to investigate growth kinetics of interfacial Cu-Sn intermetallic compound (IMC) at the solid Cu/liquid Sn interface.

Design/methodology/approach

The Sn/Cu solid–liquid interfacial IMCs are fabricated under various soldering temperatures (240°C-270°C) and soldering times (5-240 s) by dipping method. The thickness and morphology of IMC are observed and analyzed by the optical microscope and scanning electron microscope.

Findings

Holding at 260°C, Cu/Sn solid–liquid interface Cu6Sn5 growth index experience a change from 0.08 to 0.30 within 10-190 s. The growth index is 0.08 in 10-40 s; the growth index is 0.30 in 40-190 s. Cu6Sn5 grain coarsening index is constant within 10-190 s. It is 0.13. The result of the index of Cu6Sn5 grain coarsening is different from predecessors 27 results Cu6Sn5 grain coarsening index for 1/3. This is because Cu6Sn5 grain grows at the expense of its near small grain to reduce the surface Gibbs free energy, and its morphology changes from regular shape to irregular shape. It sets up the mathematical expression about the initial formation time and temperature of Cu3Sn in 240°C-270°C.

Originality/value

It obtains a mathematical model to express the changes of solid–liquid interface frontier concentration which has an effect on the interfacial Cu6Sn5 layer growth index and the Cu6Sn5 grain coarsening index. Different indexes can be obtained by establishing relevance equations, which can be used to predict the growth of the interface IMC layer. This mathematical model is established to design the solder pads and the sizes of the solder joints.

Details

Soldering & Surface Mount Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 6 June 2016

Roman Kolenak, Igor Kostolný and Martin Sahul

The work aims to study the direct bonding of silicon substrate with solders type Sn-Ag-Ti.

Abstract

Purpose

The work aims to study the direct bonding of silicon substrate with solders type Sn-Ag-Ti.

Design/methodology/approach

During the bonding process with ultrasound assistance, the active element (Ti,Ce,Mg) is distributed from the solder to interface with a silicon substrate, where it supports the bond formation.

Findings

Formation of a reaction layer, 1-2 μm in thickness, was observed. The new Si2Ti phases and Mg2Si phase were identified in the reaction layer.

Originality/value

The results of analysis suggest that the Si/Sn-Ag-Ti joint is of diffusion character. The highest average strength on silicon substrate (39 MPa) was achieved with Sn-Ag-Ti(Mg) solder.

Details

Soldering & Surface Mount Technology, vol. 28 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 25 January 2021

Xu Han, Xiaoyan Li, Peng Yao and Dalong Chen

This study aims to investigate the interfacial microstructures of ultrasonic-assisted solder joints at different soldering times.

Abstract

Purpose

This study aims to investigate the interfacial microstructures of ultrasonic-assisted solder joints at different soldering times.

Design/methodology/approach

Solder joints with different microstructures are obtained by ultrasonic-assisted soldering. To analyze the effect of ultrasounds on Cu6Sn5 growth during the solid–liquid reaction stage, the interconnection heights of solder joints are increased from 30 to 50 μm.

Findings

Scallop-like Cu6Sn5 nucleate and grow along the Cu6Sn5/Cu3Sn interface under the traditional soldering process. By comparison, some Cu6Sn5 are formed at Cu6Sn5/Cu3Sn interface and some Cu6Sn5 are randomly distributed in Sn when ultrasonic-assisted soldering process is used. The reason for the formation of non-interfacial Cu6Sn5 has to do with the shock waves and micro-jets produced by ultrasonic treatment, which leads to separation of some Cu6Sn5 from the interfacial Cu6Sn5 to form non-interfacial Cu6Sn5. The local high pressure generated by the ultrasounds promotes the heterogeneous nucleation and growth of Cu6Sn5. Also, some branch-like Cu3Sn formed at Cu6Sn5/Cu3Sn interface render the interfacial Cu3Sn in ultrasonic-assisted solder joints present a different morphology from the wave-like or planar-like Cu3Sn in conventional soldering joints. Meanwhile, some non-interfacial Cu3Sn are present in non-interfacial Cu6Sn5 due to reaction of Cu atoms in liquid Sn with non-interfacial Cu6Sn5 to form non-interfacial Cu3Sn. Overall, full Cu3Sn solder joints are obtained at ultrasonic times of 60 s.

Originality/value

The obtained microstructure evolutions of ultrasonic-assisted solder joints in this paper are different from those reported in previous studies. Based on these differences, the effects of ultrasounds on the formation of non-interfacial IMCs and growth of interfacial IMCs are systematically analyzed by comparing with the traditional soldering process.

Details

Soldering & Surface Mount Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 14 May 2021

F Sun, Zhen Pan, Yang Liu, Xiang Li, Haoyu Liu and Wenpeng Li

The purpose of this paper is to quickly manufacture full Cu3Sn-microporous copper composite joints for high-temperature power electronics applications and study the microstructure…

Abstract

Purpose

The purpose of this paper is to quickly manufacture full Cu3Sn-microporous copper composite joints for high-temperature power electronics applications and study the microstructure evolution and the shear strength of Cu3Sn at different bonding times.

Design/methodology/approach

In this paper, a novel structure of Cu/composite solder sheet/Cu was designed. The composite solder sheet was made of microporous copper filled with Sn. The composite joint was bonded by thermo-compression bonding under pressure of 0.6 MPa at 300°C. The microstructure evolution and the growth behavior of Cu3Sn at different bonding times were observed by electron microscope and metallographic microscope. The shear strength of the joint was measured by shear machine.

Findings

At initial bonding stage the copper atoms in the substrate and the copper atoms in the microporous copper dissolved into the liquid Sn. Then the scallop-liked Cu6Sn5 phases formed at the interface of liquid Sn/microporous copper and liquid Sn/Cu substrates. During the liquid Sn changing to Cu6Sn5 phases, Cu3Sn phases formed and grew at the interface of Cu6Sn5/Cu substrates and Cu6Sn5/microporous copper. After that the Cu3Sn phases continued to grow and the Cu3Sn-microporous copper composite joint with a thickness of 100 µm was successfully obtained. The growth rule of Cu3Sn was parabolic growth. The shear strength of the composite joints was about 155 MPa.

Originality/value

This paper presents a novel full Cu3Sn-microporous copper composite joint with high shear strength for high-temperature applications based on transient liquid phase bonding. The microstructure evolution and the growth behavior of Cu3Sn in the composite joints were studied. The shear strength and the fracture mechanism of the composite joints were studied.

Details

Soldering & Surface Mount Technology, vol. 33 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 April 2010

Liang Zhang, Song-bai Xue, Li-li Gao, Yan Chen, Sheng-lin Yu, Zhong Sheng and Guang Zeng

The purpose of this paper is to investigate the effects of minor addition of the rare earth (RE) element cerium, Ce, on the microstructures and creep properties of Sn-Ag-Cu solder…

Abstract

Purpose

The purpose of this paper is to investigate the effects of minor addition of the rare earth (RE) element cerium, Ce, on the microstructures and creep properties of Sn-Ag-Cu solder alloys.

Design/methodology/approach

The pure Sn, Sn-Cu alloy, Sn-Ag alloy and Cu-Ce alloy were used as raw materials. Sn-Ag-Cu alloys with different contents of RE Ce were chosen to compare with Sn-Ag-Cu. The raw materials of Sn, Sn-Cu alloy, Sn-Ag alloy, Cu-Ce alloy were melted in a ceramic crucible, and were melted at 550°C ± 1°C for 40 minutes. To homogenize the solder alloy, mechanical stirring was performed every ten minutes using a glass rod. During the melting, KC1 + LiCI (1.3:1), were used over the surface of liquid solder to prevent oxidation. The melted solder was chill cast into a rod.

Findings

It is found that the microstructure exhibits smaller grains and the Ag3Sn/Cu6Sn5 intermetallic compound (IMC) phases are modified in matrix with the addition of Ce. In particular, the addition of 0.03 wt.% Ce to the Sn-Ag-Cu solder can refine the microstructures and decrease the thickness of the IMC layers of Sn-Ag-Cu solder alloys. Meanwhile, thermodynamic analysis showed that these phenomena could be attributed to the reduction of the driving force for Cu-Sn IMC formation due to the addition of Ce. Results calculated using the thermodynamic method are close to the above experimental data. Thus, the optimum content of Ce in Sn-Ag-Cu solder alloys should be about 0.030 percent. Additionally, the effect of Ce on the creep rupture life of Sn-Ag-Cu soldered joints was studied. It was found that the creep rupture life may be increased up to 7.5 times more than that of the original Sn-Ag-Cu alloy, when Ce accounts for 0.030 percent.

Originality/value

This paper usefully investigates the effects of the RE cerium (Ce), on the microstructures and creep properties of Sn-Ag-Cu solder alloys, optimizing the quantity of Ce in the Sn-Ag-Cu solder alloy through a thermodynamic method and by creep-rupture life testing.

Details

Soldering & Surface Mount Technology, vol. 22 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 12 August 2021

Xu Han, Xiaoyan Li and Peng Yao

This study aims to investigate the effect of ultrasound on interfacial microstructures and growth kinetics of intermetallic compounds (IMCs) at different temperatures.

Abstract

Purpose

This study aims to investigate the effect of ultrasound on interfacial microstructures and growth kinetics of intermetallic compounds (IMCs) at different temperatures.

Design/methodology/approach

To investigate the effect of ultrasound on IMCs growth quantitatively, the cross-sectional area of IMCs layers over a confirmed length was obtained for calculating the thickness of the IMCs layer.

Findings

The generation of dimensional difference in normal direction between Cu6Sn5 and its adjacent Cu6Sn5, formation of bossed Cu6Sn5 and non-interfacial Cu6Sn5 in ultrasonic solder joints made the interfacial Cu6Sn5 layer present a non-scallop-like morphology different from that of traditional solder joints. At 260°C and 290°C, the Cu3Sn layer presented a wave-like shape. In contrast, at 320°C, the Cu3Sn in ultrasonic solder joints consisted of non-interfacial Cu3Sn and interfacial Cu3Sn with a branch-like shape. The Cu6Sn5/Cu3Sn boundary and Cu3Sn/Cu interface presented a sawtooth-like shape under the effect of ultrasound. The predominant mechanism of ultrasonic-assisted growth of Cu6Sn5 growth at 260°C, 290°C and 320°C involved the grain boundary diffusion accompanied by grain coarsening. The Cu3Sn growth was controlled by volume diffusion during the ultrasonic soldering process at 260°C and 290°C. The diffusion mechanism of Cu3Sn growth transformed to grain boundary diffusion accompanied by grain coarsening when the ultrasonic soldering temperature was increased to 320°C.

Originality/value

The microstructural evolution and growth kinetics of IMCs in ultrasonically prepared ultrasonic solder joints at different temperatures have rarely been reported in previous studies. In this study, the effect of ultrasound on microstructural evolution and growth kinetics of IMCs was systematically investigated.

Details

Soldering & Surface Mount Technology, vol. 34 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 December 1998

Se‐Young Jang and Kyung‐Wook Paik

In flip‐chip interconnection on organic substrates using eutectic tin/lead solder bumps, a highly reliable under bump metallurgy (UBM) is required to maintain adhesion and solder…

Abstract

In flip‐chip interconnection on organic substrates using eutectic tin/lead solder bumps, a highly reliable under bump metallurgy (UBM) is required to maintain adhesion and solder wettability. Various UBM systems such as 1μm Al/0.2μm Ti/5μm Cu, 1μm Al/02μm Ti/1μm Cu, 1μm Al/0.2μm Ni/1μm Cu and 1μm Al/0.2μm Pd/1μm Cu, applied under eutectic tin/lead solder bumps, have been investigated with regard to their interfacial reactions and adhesion properties. The effects of the number of solder reflow cycles and the aging time on the growth of intermetallic compounds (IMCs) and on the solder ball shear strength were investigated. Good ball shear strength was obtained with 1μm Al/0.2μm Ti5μm Cu and 1μm Al/0.2μm Ni/1μm Cu even after four solder reflows or seven‐day aging at 150∞C. In contrast, 1μm Al/0.2μm Ti/1μm Cu and 1μm Al/0.2μm Pd/1μm Cu showed poor ball shear strength. The decrease of the shear strength was mainly due to the direct contact between solder and non‐wettable metals such as Ti and AL, resulting in a delamination. In this case, thin 1μm Cu and 0.2μm Pd diffusion barrier layers were completely consumed by Cu‐Sn and Pd‐Sn reaction.

Details

Soldering & Surface Mount Technology, vol. 10 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 September 2023

Bifu Xiong, Siliang He, Jinguo Ge, Quantong Li, Chuan Hu, Haidong Yan and Yu-An Shen

This paper aims to examine the effects of bonding temperature, bonding time, bonding pressure and the presence of a Pt catalyst on the bonding strength of Cu/SB/P-Cu/SB/Cu joints…

Abstract

Purpose

This paper aims to examine the effects of bonding temperature, bonding time, bonding pressure and the presence of a Pt catalyst on the bonding strength of Cu/SB/P-Cu/SB/Cu joints by transient liquid phase bonding (TLPB).

Design/methodology/approach

TLPB is promising to assemble die-attaching packaging for power devices. In this study, porous Cu (P-Cu) foil with a distinctive porous structure and Sn-58Bi solder (SB) serve as the bonding materials for TLPB under a formic acid atmosphere (FA). The high surface area of P-Cu enables efficient diffusion of the liquid phase of SB, stimulating the wetting, spreading and formation of intermetallic compounds (IMCs).

Findings

The higher bonding temperature decreased strength due to the coarsening of IMCs. The longer bonding time reduced the bonding strength owing to the coarsened Bi and thickened IMC. Applying optimal bonding pressure improved bonding strength, whereas excessive pressure caused damage. The presence of a Pt catalyst enhanced bonding efficiency and strength by facilitating reduction–oxidation reactions and oxide film removal.

Originality/value

Overall, this study demonstrates the feasibility of low-temperature TLPB for Cu/SB/P-Cu/SB/Cu joints and provides insights into optimizing bonding strength for the interconnecting materials in the applications of power devices.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 October 2019

Bangyao Han, Fenglian Sun, Tianhui Li and Yang Liu

The purpose of this paper is to investigate the morphology evolution and the composition transformation of Au-Sn intermetallic compounds (IMCs) of the new…

Abstract

Purpose

The purpose of this paper is to investigate the morphology evolution and the composition transformation of Au-Sn intermetallic compounds (IMCs) of the new Au/Sn-5Sb-1Cu-0.1Ni-0.1Ag/(Au)Ni solder joint during the high temperature aging.

Design/methodology/approach

Sn-5Sb-1Cu-0.1Ni-0.1Ag solder balls (500 µm in diameter), heat sink with structure of 7.4 µm Au layer on 5 µm Ni-plated Cu alloy and Si chip with 5.16 µm plated Au were used to fabricate micro-solder joints. The joints were performed in a furnace at 150°C for 150, 250 and 350 h aging. The samples were polished and deep etched before analyzed by metallographic microscope and scanning electron microscopy, respectively. Energy dispersive x-ray spectroscopy was used to identify the composition of the IMCs.

Findings

ß-(Au,Ni,Cu)10Sn phase is formed during the soldering process. The IMCs evolution has two periods during the aging. The first is the ξ-(Au,Ni,Cu)5Sn, ξ-(Au,Cu)5Sn and δ-AuSn were formed and grew to form a full-compound joint after about 150 h aging. The second is the conversion of the full-compound joint. The IMCs converted to ξ′ phase when the aging time extends to 250 h, and transformed to ε-(Au,Ni,Cu)Sn2 and η-(Au,Ni,Cu)Sn4 after 350 h aging. The thicker gold layer and thinner solder joint can promote the growth of the IMCs. ß-(Au,Ni,Cu)10Sn emerged in Au/SnSb-CuNiAg/(Au)Ni in this research, which is not usually found.

Originality/value

The results in this study have a significant meaning for the application of the new Sn-5Sb-1Cu-0.1Ni-0.1Ag in harsh conditions.

Details

Soldering & Surface Mount Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 227