Search results

1 – 10 of over 4000
Article
Publication date: 1 April 1996

M. Nowotarski and R. De Wilde **

The effects of oxygen on solder surface tension, wetting time and surface damping are presented. Oxygen levels greater than 10 ppm lower surfacetension, increase wetting time and…

283

Abstract

The effects of oxygen on solder surface tension, wetting time and surface damping are presented. Oxygen levels greater than 10 ppm lower surface tension, increase wetting time and increase surface damping. Decreased surface tension leads to higher misalignment defects in reflow soldering, but can lower the incidence of dewetting. Increased wetting times can increase non‐wetting defects in both wave and reflow soldering, especially when using no‐clean fluxes. Increased surface damping can lead to lower bridging rates in wave soldering, provided that the oxygen level and flux levels are properly balanced. Choosing the optimum oxygen level for production soldering is trade ‐ off between the stability and the versatility of the process. The most stable soldering processes will be those performed in an inert atmosphere with less than 10 ppm oxygen .These processes are insensitive to variations in soldering machine operating parameters (i,e. a larger process window).This is most desirable for manufacturers soldering large volumes of a given circuit board. The soldering process can be optimised by optimising the circuit board design. The most versatile soldering processes will be those performed in an inert atmosphere with controlled addition of oxygen in the range of 100 ppm to 10,000 ppm (1%). This will be most desirable to manufacturers soldering short runs of a large variety of circuit boards. The soldering process is best optimised by controlling the soldering machine operating parameters (oxygen, flux, preheat, conveyor speed, etc.).

Details

Soldering & Surface Mount Technology, vol. 8 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 1992

S.B. Dunkerton

The increasing complexity of microelectronic devices and the advent of surface mount technology has led to interest in alternatives to mass reflow soldering techniques. One method…

Abstract

The increasing complexity of microelectronic devices and the advent of surface mount technology has led to interest in alternatives to mass reflow soldering techniques. One method with advantages for rapid automation and minimal heat input, is laser soldering. Various laser methods are available for application to reflow soldering, the prime options being continuous wave CO2, continuous wave Nd/YAG and pulsed Nd/YAG. This paper presents the results of work to compare and contrast the three techniques. The paper concentrates on the soldering of leadframes and SMD (gull wing and J‐lead) to plated Al2O3 substrates, but also mentions soldering to FR4 PCBs.

Details

Soldering & Surface Mount Technology, vol. 4 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 27 March 2023

Y. Wu, Z.J. Zhang, L.D. Chen and X. Zhou

Laser soldering has attracted attention as an alternative soldering process for microsoldering due to its localized and noncontact heating, a rapid rise and fall in temperature…

Abstract

Purpose

Laser soldering has attracted attention as an alternative soldering process for microsoldering due to its localized and noncontact heating, a rapid rise and fall in temperature, fluxless and easy automation compared to reflow soldering.

Design/methodology/approach

In this study, the metallurgical and mechanical properties of the Sn3.0Ag0.5Cu/Ni-P joints after laser and reflow soldering and isothermal aging were compared and analyzed.

Findings

In the as-soldered Sn3.0Ag0.5Cu/Ni-P joints, a small granular and loose (Cu,Ni)6Sn5 intermetallic compound (IMC) structure was formed by laser soldering regardless of the laser energy, and a long and needlelike (Cu,Ni)6Sn5 IMC structure was generated by reflow soldering. During aging at 150°C, the growth rate of the IMC layer was faster by laser soldering than by reflow soldering. The shear strength of as-soldered joints for reflow soldering was similar to that of laser soldering with 7.5 mJ, which sharply decreased from 0 to 100 h for both cases and then was maintained at a similar level with increasing aging time.

Originality/value

Laser soldering with certain energy is effective for reducing the thickness of IMCs, and ensuring the mechanical property of the joints was similar to reflow soldering.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 May 2015

Frantisek Steiner, Karel Rendl and Vaclav Wirth

The purpose of this paper is to verify how solder joint properties correlate with soldering profile set-up. These characteristics act against each other. All observed properties…

Abstract

Purpose

The purpose of this paper is to verify how solder joint properties correlate with soldering profile set-up. These characteristics act against each other. All observed properties may significantly affect the quality and reliability of solder joints. The purpose is also to design recommendations for manufacturers of electronic assemblies.

Design/methodology/approach

The samples for experiment were reflowed by using a laboratory reflow oven. A LEXT laser confocal microscope was used for wetting angle and intermetallic compound (IMC) thickness measurement. The ionic contamination was measured by using a contaminometer.

Findings

The appropriate choice of soldering profile is very important for the reliability of electronic assemblies. The higher temperatures or longer preheating and soldering times improve the wetting angle. Likewise, there is also the activation of all the fluxes. The result is low contamination with printed circuit boards (PCBs). On the other hand, we must not forget that higher temperatures and longer soldering time also affect the thickness of the IMC. The outer limits recommended by the manufacturer were selected for the soldering profile set-up. Even within these limits, it is possible to achieve an improvement in the wetting angle, an improvement in levels of PCB contamination and an increase in the thickness of the IMC. This paper presents the results achieved for solders Sn42Bi57.6Ag0.4, Sn96.5Ag3Cu0.5 and Sn97Ag3.

Originality/value

The gained knowledge on the correlation between IMC thickness, solderability of PCB and PCB contamination caused by different soldering profile set-ups can help to prevent reliability problems because each of the named effects has a significant influence on reliability.

Details

Circuit World, vol. 41 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 18 March 2024

Min Zeng, Jianxing Xie, Zhitao Li, Qincheng Wei and Hui Yang

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter…

Abstract

Purpose

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter (EKF) to estimate the temperature of the thermocouple.

Design/methodology/approach

Temperature optimal control is combined with a closed-loop proportional integral differential (PID) control method based on an EKF. Different control methods for measuring the temperature of the thermode in terms of temperature control, error and antidisturbance are studied. A soldering process in a semi-industrial environment is performed. The proposed control method was applied to the soldering of flexible printed circuits and circuit boards. An infrared camera was used to measure the top-surface temperature.

Findings

The proposed method can not only estimate the soldering temperature but also eliminate the noise of the system. The performance of this methodology was exemplary, characterized by rapid convergence and negligible error margins. Compared with the conventional control, the temperature variability of the proposed control is significantly attenuated.

Originality/value

An EKF was designed to estimate the temperature of the thermocouple during hot-bar soldering. Using the EKF and PID controller, the nonlinear properties of the system could be effectively overcome and the effects of disturbances and system noise could be decreased. The proposed method significantly enhanced the temperature control performance of hot-bar soldering, effectively suppressing overshoot and shortening the adjustment time, thereby achieving precise temperature control of the controlled object.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 August 2000

P.T. Vianco and A.C. Kilgo

Gold coatings are used on connector structures to maintain suitable solderability of the underlying Ni coating layer as well as to prevent surface corrosion during service…

Abstract

Gold coatings are used on connector structures to maintain suitable solderability of the underlying Ni coating layer as well as to prevent surface corrosion during service. However, the likelihood of Au embrittlement in connector solder joints must be minimized by eliminating much of the Au plating from the surfaces using a hot solder dipping or “wicking” procedure prior to final assembly. It was observed that Au removal was most effective by using a double wicking process. Also, a higher soldering temperature improved the efficiency of the Au removal process. A longer soldering time during the wicking process did not appear to offer an appreciable improvement in Au removal. Because the wicking procedure was a manual process, it was found to be operator dependent.

Details

Soldering & Surface Mount Technology, vol. 12 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 1989

C. Lea

The success of vapour phase soldering for electronic assemblies has led to the availability of several heat transfer fluids for the purpose. This paper aims to demonstrate the…

Abstract

The success of vapour phase soldering for electronic assemblies has led to the availability of several heat transfer fluids for the purpose. This paper aims to demonstrate the significance of the differing properties of fluids, illustrated by measurements on the three most commonly used in the UK. These three, as well as any future fluids, can be judged in terms of (i) vapour temperature and its influence on soldering yields and materials properties; (ii) stability of soldering temperature with time; (iii) heat transfer efficiency; (iv) power requirements and thermal control; (v) rosin solubility and flux wash‐off; (vi) toxicity, especially under thermal stress; (vii) corrosivity and its dependence on process control; and (viii) consumption of fluid.

Details

Soldering & Surface Mount Technology, vol. 1 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 December 1996

G. Becker

This issue of the journal features the first part of a two‐part serieswhich comprises Chapter 15 from Volume 1 of a recently published book ‘AComprehensive Guide to the

168

Abstract

This issue of the journal features the first part of a two‐part series which comprises Chapter 15 from Volume 1 of a recently published book ‘A Comprehensive Guide to the Manufacture of Printed Board Assemblies’*edited by W. MacLeod Ross. Volume 1, containing 800 pages, and Volume 2, scheduled to be published in the Spring of 1997 and estimated to contain around 900 pages, will, as far as the publishers are aware, be the most comprehensive book ever published on the subject of printed boards and printed board assemblies.

Details

Soldering & Surface Mount Technology, vol. 8 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 February 1983

P.L. Urban

Control of soldering process variables dictates the quality of a hand soldered connection and among these feature the important parameters of tip temperature and tip style…

Abstract

Control of soldering process variables dictates the quality of a hand soldered connection and among these feature the important parameters of tip temperature and tip style. Experimental work has investigated the temperature/time characteristics of typical PTH boards and the results are analysed, showing that maximum land temperature is increased when tip temperature is increased. Tip size causes variations in maximum land temperature at any selected tip temperature.

Details

Circuit World, vol. 9 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 4 April 2016

Chun Sean Lau, C.Y. Khor, D. Soares, J.C. Teixeira and M.Z. Abdullah

The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review…

1038

Abstract

Purpose

The purpose of the present study was to review the thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components (SMCs). The topics of the review include challenges in modelling of the reflow soldering process, optimization and the future challenges in the reflow soldering process. Besides, the numerical approach of lead-free solder reliability is also discussed.

Design/methodology/approach

Lead-free reflow soldering is one of the most significant processes in the development of surface mount technology, especially toward the miniaturization of the advanced SMCs package. The challenges lead to more complex thermal responses when the PCB assembly passes through the reflow oven. The virtual modelling tools facilitate the modelling and simulation of the lead-free reflow process, which provide more data and clear visualization on the particular process.

Findings

With the growing trend of computer power and software capability, the multidisciplinary simulation, such as the temperature and thermal stress of lead-free SMCs, under the influenced of a specific process atmosphere can be provided. A simulation modelling technique for the thermal response and flow field prediction of a reflow process is cost-effective and has greatly helped the engineer to eliminate guesswork. Besides, simulated-based optimization methods of the reflow process have gained popularity because of them being economical and have reduced time-consumption, and these provide more information compared to the experimental hardware. The advantages and disadvantages of the simulation modelling in the reflow soldering process are also briefly discussed.

Practical implications

This literature review provides the engineers and researchers with a profound understanding of the thermo-mechanical challenges of reflowed lead-free solder joints in SMCs and the challenges of simulation modelling in the reflow process.

Originality/value

The unique challenges in solder joint reliability, and direction of future research in reflow process were identified to clarify the solutions to solve lead-free reliability issues in the electronics manufacturing industry.

Details

Soldering & Surface Mount Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 4000