Search results

1 – 10 of over 2000
Article
Publication date: 1 January 1990

J. Seyyedi and S. Jawaid

The wearout characteristics were investigated for soldered interconnections of surface mount technology (SMT) chip resistors, chip capacitors and a 44 I/O ceramic leaded chip…

Abstract

The wearout characteristics were investigated for soldered interconnections of surface mount technology (SMT) chip resistors, chip capacitors and a 44 I/O ceramic leaded chip carrier (CLCC) package. Four double‐sided test vehicles were subjected to accelerated thermal cycling in the — 10°C to + 110°C range; 30°C/min ramp rate; and 1 minute dwell time at each temperature extreme. The test was interrupted at initially 500 cycle and later at 1000 cycle intervals to perform visual inspection of all soldered interconnections, functional performance verification for the test vehicles, and resistance measurement on leaded SMT joints. Metallographic examinations and fractographic studies were also performed after 0, 4500 and 13000 cycles to characterise the micromechanisms of soldered joint strength degradation and failure. The wearout thresholds for soldered joints of chip resistors and capacitors on side 1 were respectively 2500 and 4500 cycles. The greater thermal fatigue resistance of the latter joints was attributed to a lower device‐substrate coefficient of thermal expansion (CTE) mismatch and a more favourable device geometry compared with chip resistors. These passive components on side 2, however, showed a virtually identical soldered joint wearout threshold of 6500 cycles. The constraints imposed by the applied mounting adhesive were primarily responsible for this behaviour. No correlation appeared to exist among various failure criteria used to determine the onset of failure for leaded SMT soldered connections. The concurrent monitoring of electrical resistance and the applied tensile load showed a modest relationship between the load drop and resistance increase, however. The test vehicles continued to pass the functional performance verification, even after 13000 thermal cycles. Nonetheless, the joint wearout thresholds were considered to be 2500, 4500 and 4500 cycles for chip resistor, chip capacitor and CLCC components, respectively. A 50% soldered joint strength drop was considered as the wearout threshold for the CLCC device. Metallographic examination showed limited barrel wall cracking of the vias and no evidence of cracks with the through‐hole soldered joints, even after 13000 thermal cycles.

Details

Soldering & Surface Mount Technology, vol. 2 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 January 1989

E.E. de Kluizenaar and M.M.F. Verguld

Strength measurements of soldered joints in electronics are widely used for the assessment of joint quality. However, a variety of experiments, reported in this article, clearly…

Abstract

Strength measurements of soldered joints in electronics are widely used for the assessment of joint quality. However, a variety of experiments, reported in this article, clearly show that a strong relationship between initial strength and joint quality does not exist. Far more important for joint reliability is the resistance of soldered constructions to low‐cycle fatigue of the solder metal, caused by thermal expansion differences upon temperature cycling during use. A temperature cycling test is proposed as a standard accelerated ageing method for the prediction of the low‐cycle fatigue life of soldered joints in electronics.

Details

Soldering & Surface Mount Technology, vol. 1 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 28 June 2011

Peng Xue, Song‐bai Xue, Liang Zhang, Yi‐fu Shen, Li‐li Gao, Sheng‐lin Yu, Hong Zhu, Zongjie Han and Yan Chen

The purpose of this paper is to investigate the laser soldering of fine pitch quad flat package (QFP) devices using lead‐free solders and solder joint reliability during thermal…

Abstract

Purpose

The purpose of this paper is to investigate the laser soldering of fine pitch quad flat package (QFP) devices using lead‐free solders and solder joint reliability during thermal cycling.

Design/methodology/approach

QFP devices were selected as the test vehicles and were soldered with four alloy types, Sn37Pb, Sn3.5Ag, Sn3.8Ag0.7Cu and Sn3.8Ag0.7Cu0.03Ce. The experimental samples were QFP‐256 devices with lead‐free solder paste on the printed circuit boards. The packages were dried for 24 h at 125°C prior to reflow soldering. Soldering experiments on the QFP devices were carried out with an infrared (IR) reflow soldering oven and a diode laser (DL) soldering system. Reflow soldering was performed at peak temperatures of 210°C (SnPb), 240°C (SnAgCu and SnAgCuCe) and 250°C (SnAg), as determined on the boards. Pull testing was adopted to evaluate the tensile strength of the four solders using an STR–1000 micro‐joint strength tester.

Findings

The tensile force of the QFP micro‐joints increased as laser intensity increased when it was less than an “optimal” value. The maximum tensile force of the QFP micro‐joints was gained when the laser intensity had increased to 2,165, 2,127, 2,165 and 2,064 W/cm2, depending on the alloy used. The thermal fatigue performance of three lead‐free solder joints, SnAgCuCe, SnAgCu and SnAg, was determined to be superior to that of the eutectic SnPb alloy. After soldering without thermal cycling tests, the fracture morphology of soldered joints exhibited characteristic toughness fracture with both of the soldering methods. After 700 thermal cycles, the fracture mechanism was also toughness fracture, nevertheless, the dimples became large. The fracture morphology of the soldered joints subjected to 1,500 thermal cycles indicated brittle intergranular fracture on the fracture surface and no intense plastic deformation appeared before fracture with IR soldering. For DL soldering, the pull fracture model of the SnAgCuCe was completely ductile in the soldered joint with 1,500 thermal cycles.

Originality/value

The paper usefully investigates the influence of laser intensity on the tensile strength of different soldered joints and the solder joint reliability during thermal cycling.

Details

Soldering & Surface Mount Technology, vol. 23 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 1991

J. Seyyedi, B. Arsenault and J.P. Keller

Quasi shear and tensile mode stress‐rupture and quasi shear mode creep behaviours were investigated for aged production surface mount soldered connections of 127 mm pitch, rigid…

Abstract

Quasi shear and tensile mode stress‐rupture and quasi shear mode creep behaviours were investigated for aged production surface mount soldered connections of 127 mm pitch, rigid gullwing and J‐bend configurations at ambient and 60°C (on limited specimens) environments. These joints were manufactured by the vapour phase reflow soldering process using a 63Sn‐37Pb solder composition. Metallographic examinations and fractrographic studies were also performed on appropriate specimens to characterise the metallurgical attributes of the solder and the joint failure. A relatively coarse solder microstructure was observed with both joint configurations. The steady‐state creep data of both soldered joints exhibited two distinct creep regimes. A grain boundary‐controlled regime at low loads with a slope of 042 for gullwing and 0?50 for J‐bend joints was followed by a dislocation climb‐controlled regime at high loads with a slope of 0?13 and 0?24 for gullwing and J‐bend configurations, respectively. The log‐log plot of applied load varied linearly with rupture time for the entire load range for the respective soldered joints for both modes of testing at room temperature. A transgranular fracture morphology was found to predominate for the entire load regime for the quasi shear mode tested gullwing joints. A mixed‐mode fracture morphology with predominantly transgranular features was observed for both low and high loading conditions for quasi shear mode tested J‐bend specimens. The steady‐state creep elongation in shear showed a strong dependence on the applied load for both types of soldered joints. This was primarily attributed to the presence of relatively large creep transients, especially at higher loads.

Details

Soldering & Surface Mount Technology, vol. 3 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 March 1990

E.E. de Kluizenaar

In Part 1, background information on mechanical properties and metallurgy of solder alloys and soldered joints has been presented. In Part 2, mechanisms of damage and degradation…

Abstract

In Part 1, background information on mechanical properties and metallurgy of solder alloys and soldered joints has been presented. In Part 2, mechanisms of damage and degradation of components and soldered joints during soldering, transport and field life have been discussed, the most important mechanism being low cycle fatigue of the solder metal. In this third part, the determination of the fatigue life expectancy of soldered joints is discussed. Accelerated testing of fatigue is needed, as the possibilities of calculations are strongly limited. A temperature cycle test under specified conditions is proposed as a standard. A model is worked out for the determination of the acceleration factor of this test. A compilation of a number of solder fatigue test results, generated in the author's company, is presented.

Details

Soldering & Surface Mount Technology, vol. 2 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 February 1990

E.E. de Kluizenaar

In Part 1, background information on mechanical properties and metallurgy of solder alloys and soldered joints has been presented. In this part, mechanisms of damage and…

26

Abstract

In Part 1, background information on mechanical properties and metallurgy of solder alloys and soldered joints has been presented. In this part, mechanisms of damage and degradation of components and soldered joints during soldering, during transport, and during field life are discussed. Thermal shock damage of components and excessive dissolution of metallisations are the major effects during soldering. During transport, fatigue of leads and fracture may be caused by vibration and mechanical shocks respectively. During field life, degradation is governed primarily by low cycle fatigue of the solder and incidentally also by formation of intermetallic diffusion layers between solder and base metals. This article contains an extended illustration of solder fatigue of joints on a variety of component and board types. Finally, the influence of the variety of soldered constructions in electronic circuits on solder fatigue is discussed.

Details

Soldering & Surface Mount Technology, vol. 2 no. 2
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 18 September 2009

Jianbiao Pan, Tzu‐Chien Chou, Jasbir Bath, Dennis Willie and Brian J. Toleno

The purpose of this paper is to investigate the effects of reflow time, reflow peak temperature, thermal shock and thermal aging on the intermetallic compound (IMC) thickness for…

Abstract

Purpose

The purpose of this paper is to investigate the effects of reflow time, reflow peak temperature, thermal shock and thermal aging on the intermetallic compound (IMC) thickness for Sn3.0Ag0.5Cu (SAC305) soldered joints.

Design/methodology/approach

A four‐factor factorial design with three replications is selected in the experiment. The input variables are the peak temperature, the duration of time above solder liquidus temperature (TAL), solder alloy and thermal shock. The peak temperature has three levels, 12, 22 and 32°C above solder liquidus temperatures (or 230, 240 and 250°C for SAC305 and 195, 205, and 215°C for SnPb). The TAL has two levels, 30 and 90 s. The thermally shocked test vehicles are subjected to air‐to‐air thermal shock conditioning from −40 to 125°C with 30 min dwell times (or 1 h/cycle) for 500 cycles. Samples both from the initial time zero and after thermal shock are cross‐sectioned. The IMC thickness is measured using scanning electron microscopy. Statistical analyses are conducted to compare the difference in IMC thickness growth between SAC305 solder joints and SnPb solder joints, and the difference in IMC thickness growth between after thermal shock and after thermal aging.

Findings

The IMC thickness increases with higher reflow peak temperature and longer time above liquidus. The IMC layer of SAC305 soldered joints is statistically significantly thicker than that of SnPb soldered joints when reflowed at comparable peak temperatures above liquidus and the same time above liquidus. Thermal conditioning leads to a smoother and thicker IMC layer. Thermal shock contributes to IMC growth merely through high‐temperature conditioning. The IMC thickness increases in SAC305 soldered joints after thermal shock or thermal aging are generally in agreement with prediction models such as that proposed by Hwang.

Research limitations/implications

It is still unknown which thickness of IMC layer could result in damage to the solder.

Practical implications

The IMC thickness of all samples is below 3 μm for both SnPb and SAC305 solder joints reflowed at the peak temperature ranging from 12 to 32°C above liquidus temperature and at times above liquidus ranging from 30 to 90 s. The IMC thickness is below 4 μm after subjecting to air‐to‐air thermal shock from −40 to 125°C with 30 min dwell time for 500 cycles or thermal aging at 125°C for 250 h.

Originality/value

The paper reports experimental results of IMC thickness at different thermal conditions. The application is useful for understanding the thickness growth of the IMC layer at various thermal conditions.

Details

Soldering & Surface Mount Technology, vol. 21 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 27 March 2023

Y. Wu, Z.J. Zhang, L.D. Chen and X. Zhou

Laser soldering has attracted attention as an alternative soldering process for microsoldering due to its localized and noncontact heating, a rapid rise and fall in temperature…

Abstract

Purpose

Laser soldering has attracted attention as an alternative soldering process for microsoldering due to its localized and noncontact heating, a rapid rise and fall in temperature, fluxless and easy automation compared to reflow soldering.

Design/methodology/approach

In this study, the metallurgical and mechanical properties of the Sn3.0Ag0.5Cu/Ni-P joints after laser and reflow soldering and isothermal aging were compared and analyzed.

Findings

In the as-soldered Sn3.0Ag0.5Cu/Ni-P joints, a small granular and loose (Cu,Ni)6Sn5 intermetallic compound (IMC) structure was formed by laser soldering regardless of the laser energy, and a long and needlelike (Cu,Ni)6Sn5 IMC structure was generated by reflow soldering. During aging at 150°C, the growth rate of the IMC layer was faster by laser soldering than by reflow soldering. The shear strength of as-soldered joints for reflow soldering was similar to that of laser soldering with 7.5 mJ, which sharply decreased from 0 to 100 h for both cases and then was maintained at a similar level with increasing aging time.

Originality/value

Laser soldering with certain energy is effective for reducing the thickness of IMCs, and ensuring the mechanical property of the joints was similar to reflow soldering.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 February 1992

J.H. Huang, W. Gao, Y.Y. Jian and Y.H. Jiang

An installation has been developed for carrying out thermal cycling experiments on soldered SMT joints. Using this thermal cycle installation (which was developed by the authors…

Abstract

An installation has been developed for carrying out thermal cycling experiments on soldered SMT joints. Using this thermal cycle installation (which was developed by the authors) and a simulated chip carrier, study has been made of the influence of various factors on the reliability of soldered SMT joints during thermal cycling. These factors include the position of the soldered joint, the temperature range of the thermal cycle, the dwell time, etc.

Details

Soldering & Surface Mount Technology, vol. 4 no. 2
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 January 1990

E.E. de Kluizenaar

Damage to components during soldering and degradation of soldered joints is determined to a large extent by the mechanical properties and the metallurgy of solder alloys and…

Abstract

Damage to components during soldering and degradation of soldered joints is determined to a large extent by the mechanical properties and the metallurgy of solder alloys and soldered joints. Knowledge of these properties is required for understanding of the mechanisms of damage and degradation. A compilation of this background knowledge is presented in this first article. It comprises the elastic, strength, creep and fatigue characteristics of tin/lead solders. Further, the metallurgy of tin/lead solders and soldered joints is discussed in terms of solidification structures, formation of intermetallic compounds, ageing of structures and effects of different solderable metallisations and soldering technology.

Details

Soldering & Surface Mount Technology, vol. 2 no. 1
Type: Research Article
ISSN: 0954-0911

1 – 10 of over 2000