Search results

1 – 10 of 228
Article
Publication date: 22 November 2018

A. Syafiq, A.K. Pandey, Vengadaesvaran Balakrishnan, Syed Shahabuddin and Nasrudin Abd Rahim

This paper aims to investigate the thermal stability and hydrophobicity of difference alkyl chain of silanes with silicon (Si) micro- and nanoparticles.

Abstract

Purpose

This paper aims to investigate the thermal stability and hydrophobicity of difference alkyl chain of silanes with silicon (Si) micro- and nanoparticles.

Design/methodology/approach

Sol-gel methods have been used to design superhydrophobic glass substrates through surface modification by using low-surface-energy Isooctyl trimethoxysilane (ITMS) and Ethyl trimethoxysilane (ETMS) solution. Hierarchical double-rough scale solid surface was built by Si micro- and nanoparticles to enhance the surface roughness. The prepared sol was applied onto glass substrate using dip-coating method and was dried at control temperature of 400°C inside the tube furnace.

Findings

The glass substrate achieved the water contact angle as high as 154 ± 2° and 150.4 ± 2° for Si/ITMS and Si/ETMS films, respectively. The Si/ITMS and Si/ETMS also were equipped with low sliding angle as low as 3° and 5°, respectively. The Si micro- and nanoparticles in the coating system have created nanopillars between them, which will suspend the water droplets. Both superhydrophobic coatings have showed good stability against high temperature up to 200°C as there are no changes in WCA shown by both coatings. Si/ITMS film sustains its superhydrophobicity after impacting with further temperature up to 400°C and turns hydrophobic state at 450°C.

Research limitations/implications

Findings will be useful to develop superhydrophobic coatings with high thermal stability.

Practical implications

Sol method provides a suitable medium for the combination of organic-inorganic network to achieve high hydrophobicity with optimum surface roughness.

Originality/value

Application of different alkyl chain groups of silane resin blending with micro- and nanoparticles of Si pigments develops superhydrophobic coatings with high thermal stability.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 February 2010

A. Awal, S.B. Ghosh, M. Rana, R.D. Hund and V. Rossbach

Temporary surface modifications of cotton fabrics with different water repellent agents by wet chemical treatments were examined. The hydrophobicity of the treated substrates was…

Abstract

Temporary surface modifications of cotton fabrics with different water repellent agents by wet chemical treatments were examined. The hydrophobicity of the treated substrates was determined by contact angle. The results show that the cotton fabric became hydrophobic. Three hydrophobic finishing agents were used in this study. The fabric properties were investigated in terms of moisture regain. Significant changes in properties were observed for the different finished materials. The surface investigation conducted by scanning electron microscopy (SEM) provided distinctive features of the untreated and treated fabric samples. Elementary analysis was also carried out on the substrate through energy dispersive x-ray (EDX) to confirm the presence of hydrophobic groups. In this study, a unique approach based on the double coating method was found to be a promising technique for modifying cotton fabrics temporarily and the hydrophobic finishing agent was easily removable which in turn would be beneficial for dyeing in supercritical CO2 medium. The method therefore offers great advantages in terms of regaining natural properties of cotton fabrics after suitable modifications.

Details

Research Journal of Textile and Apparel, vol. 14 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 4 September 2017

Mangesh Teli and Bhagyashri N. Annaldewar

The purpose of this paper is to prepare coloured superhydrophobic and ultraviolet (UV) protective nylon fabrics using nanosilica copper oxide coating.

Abstract

Purpose

The purpose of this paper is to prepare coloured superhydrophobic and ultraviolet (UV) protective nylon fabrics using nanosilica copper oxide coating.

Design/methodology/approach

In this study, brown coloured superhydrophobic nylon fabric exhibiting UV protective properties was prepared by step-wise deposition of silica nanoparticles, copper oxide and sodium stearate. The hydrophobicity of treated fabrics was characterised by water contact angle measurement and UV protection properties of fabric were assessed by Australian/New Zealand Standard. Also, a colouring effect of treatment on nylon fabric was measured using spectrophotometer.

Findings

The modified fabric not only exhibited superhydrophobicity with the water contact angle of 150.6°, but also rendered excellent protection against UV radiation. The fabric showed retention of hydrophobic and UV protection properties up to 20 washing cycles.

Originality/value

A novel method for imparting superhydrophobicity and UV protective properties along with colouration effect on nylon fabrics has been reported. This type of fabric has potential application in the field of protective clothing.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 June 2018

Zahra Shams Ghahfarokhi, Mojtaba Bagherzadeh, Ebrahim Ghiamati Yazdi and Abbas Teimouri

The purpose of this paper is study of the type of functional group and its situation on phenyl molecule, in increasing the corrosion protection of modified graphene layers by it…

Abstract

Purpose

The purpose of this paper is study of the type of functional group and its situation on phenyl molecule, in increasing the corrosion protection of modified graphene layers by it. Corrosion protection efficiency of graphene was raised via modifying the surface of graphene-coated carbon steel (CS/G) by using aromatic molecules. Phenyl groups with three different substitutions including COOH, NO2 and CH3 grafted to graphene via diazonium salt formation route, by using carboxy phenyl, nitro phenyl and methyl phenyl diazonium salts in ortho, meta and para spatial situations.

Design/methodology/approach

Molecular bindings were characterized by using X-ray diffractometer, fourier-transform infrared spectroscopy (FTIR), Raman and scanning electron microscopy (SEM)/ energy dispersive X-ray analysis (EDXA) methods. Anti-corrosion performance of modified CS/G electrodes was evaluated by weight loss and electrochemical techniques, potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy, in 3.5 per cent NaCl solution.

Findings

The obtained results confirmed covalently bonding of phenyl groups to the graphene surface. Also, the observed results showed that substitution spatial situations on phenyl groups can affect charge transfer resistance (Rct), corrosion potential (Ecorr), corrosion current density (jcorr) and the slope of the anodic and cathodic reaction (ßa,c), demonstrating that the proposed modification method can hinder the corrosion reactions. The proposed modification led to restoring the graphene surface defects and consequently increasing its corrosion protection efficiency.

Originality/value

The obtained results from electrochemical methods proved that protection efficiency was observed in order COOH < NO2 < CH3 and MPD in the para spatial situation and showed the maximum protection efficiency of 98.6 per cent in comparison to other substitutions. Finally, the ability of proposed graphene surface modification route was further proofed by using surface methods, i.e. SEM and EDXA, and contact angles measurements.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 2016

Alena Pietrikova, Peter Lukacs, Dagmar Jakubeczyova, Beata Ballokova, Jerzy Potencki, Grzegorz Tomaszewski, Jan Pekarek, Katerina Prikrylova and Martin Fides

This paper aims to find an optimal surface treatment of commonly used polymeric substrates for achieve the high adhesion of printed structures. For this reason, the investigation…

1706

Abstract

Purpose

This paper aims to find an optimal surface treatment of commonly used polymeric substrates for achieve the high adhesion of printed structures. For this reason, the investigation of substrates surfaces from different perspectives is presented in this paper.

Design/methodology/approach

The contact angle measurements as well as the roughness measurements were realised for the analysis of surface properties of investigated substrates. The impact of applied chemical agents for surface treatment onto the wettability is analysed for polyimide, polyethylene terephthalate and polyethylene naphthalene substrates.

Findings

The results prove the correlation among wettability, surface energy and work of adhesion with respect to the theoretical background. The surface treatment of polymeric substrates by chemical agents, such as acetone, toluene, ethanol, isopropyl and fluor silane polymer, has a significant impact onto the wettability of substrates which affects the final deposition process of nanoinks.

Originality/value

The main benefit of the surfaces’ investigation presented in this paper lays in surface modification by readily available chemical agents for optimising the deposition process nanoinks used in inkjet printing technology.

Details

Circuit World, vol. 42 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 August 2021

Bochun Xu, Nan Zou, Yunhao Jia, Chao Feng, Jiajia Bu, Yu Yan and Zhipeng Xing

The purpose of this paper is to study the effect of micro-nano surface texture on the corrosion resistance of a titanium alloy and investigate the correlation between corrosion…

Abstract

Purpose

The purpose of this paper is to study the effect of micro-nano surface texture on the corrosion resistance of a titanium alloy and investigate the correlation between corrosion resistance and hydrophobicity.

Design/methodology/approach

The surface of the Ti6Al4V alloy was modified by laser processing and anodizing to fabricate micro-pits, nanotubes and micro-nano surface textures. Afterward, the surface morphology, hydrophobicity and polarization curve of the samples were analyzed by cold field scanning electron microscopy, contact angle measurement instruments and a multi-channel electrochemical workstation.

Findings

The micro-nano surface texture can enhance the hydrophobicity of the Ti6Al4V surface, which may lead to better drag reduction to ease the friction of implants in vivo. Nevertheless, no correlation existed between surface hydrophobicity and corrosion resistance; the corrosion resistance of samples with nanotubes and high-density samples with micro-nano surface texture was extremely enhanced, indicating the similar corrosion resistance of the two.

Research limitations/implications

The mechanism of micro-dimples on the corrosion resistance of the micro-nano surface texture was not studied.

Practical implications

The density of micro-pits needs to be optimized to guarantee excellent corrosion resistance in the design of the micro-nano surface texture; otherwise, it will not fulfill the requirement of surface modification.

Originality/value

The influence of the micro-nano surface texture on the corrosion resistance, as well as the relationship between hydrophobicity and corrosion resistance of the titanium alloy surface, were systematically investigated for the first time. These conclusions offer new knowledge.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 August 2019

Fupeng Cheng, Jinglong Cui, Shuai Xu, Hongyu Wang, Pengchao Zhang and Juncai Sun

The purpose of this paper is to improve the surface electrical conductivity and corrosion resistance of AISI 430 stainless steel (430 SS) as bipolar plates for proton exchange…

Abstract

Purpose

The purpose of this paper is to improve the surface electrical conductivity and corrosion resistance of AISI 430 stainless steel (430 SS) as bipolar plates for proton exchange membrane fuel cells (PEMFCs), a protective Nb-modified layer is formed onto stainless steel via the plasma surface diffusion alloying method. The effect of diffusion alloying time on electrochemical behavior and surface conductivity is evaluated.

Design/methodology/approach

In this work, the surface electrical conductivity and corrosion resistance of modified specimen are evaluated by the potentiodynamic and potentionstatic polarization tests. Moreover, the hydrophobicity is also investigated by contact angle measurement.

Findings

The Nb-modified 430 SS treated by 1.5 h (1.5Nb) presented a lower passivation current density, lower interfacial contact resistance and a higher hydrophobicity than other modified specimens. Moreover, the 1.5 Nb specimen presents a smoother surface than other modified specimens after potentionstatic polarization tests.

Originality/value

The effect of diffusion alloying time on electrochemical behavior, surface conductivity and hydrophobicity of modified specimen is evaluated. The probable anti-corrosion mechanism of Nb-modified specimen in simulated acid PEMFC cathode environment is presented.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 31 December 2018

A. Syafiq, A.K. Pandey, Vengadaesvaran Balakrishnan and Nasrudin Abd Rahim

The paper aims to investigate the effect of Degussa P-25 Titanium Dioxide (TiO2) nanoparticles on hydrophobicity and self-cleaning ability as a single organic coating on glass…

Abstract

Purpose

The paper aims to investigate the effect of Degussa P-25 Titanium Dioxide (TiO2) nanoparticles on hydrophobicity and self-cleaning ability as a single organic coating on glass substrate.

Design/methodology/approach

Two methods have been used to enhance the hydrophobicity on glass substrates, namely, surface modification by using low surface energy isooctyltrimethoxysilane (ITMS) solution and construction of rough surface morphology using Degussa P-25 TiO2 nanoparticles with simple bottom-up approach. The prepared sol was applied onto glass substrate using dip-coating technique and stoved in the vacuum furnace 350°C.

Findings

The ITMS coating with nano TiO2 pigment has modified the glass substrate surface by achieving the water contact angle as high as 169° ± 2° and low sliding angle of 0° with simple and low-cost operation. The solid and air phase interface has created excellent anti-dirt and self-cleaning properties against dilute ketchup solution, mud and silicon powder.

Research limitations/implications

Findings will be useful in the development of self-cleaning and anti-dirt coating for photovoltaic panels.

Practical implications

Sol method provides the suitable medium for the combination of organic–inorganic network to achieve high superhydrophobicity and optimum self-cleaning ability.

Originality/value

Application of blended organic–inorganic sol as self-cleaning and anti-dirt coating film.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 July 2014

Sushilkumar A. Jadhav, Roberta Bongiovanni, Daniele L. Marchisio, Daniela Fontana and Christian Egger

The purpose of the present study is to use an amino-functional polysiloxane for the surface modification of red iron oxide (Fe2O3) pigment particles for their improved dispersion…

Abstract

Purpose

The purpose of the present study is to use an amino-functional polysiloxane for the surface modification of red iron oxide (Fe2O3) pigment particles for their improved dispersion stability and hydrophobicity and to study the chemical interactions of polysiloxanes with the particle surface.

Design/methodology/approach

Surface-treated red Fe2O3 pigment particles were prepared by treatment of the particles with different quantities of the (aminopropylmethylsiloxane)-dimethylsiloxane copolymer in concentrated suspensions in water. The samples were analysed with different instrumental and spectroscopic techniques to study the interaction of the polysiloxane with the particle surface and the effect of the surface treatment of the particles on their dispersion stability and hydrophobicity.

Findings

Chemisorption of the amino-polysiloxane onto the surface of Fe2O3 particles resulted in stable layers which turned out to be helpful in improving greatly the dispersion stability of the particles as shown by the Static Light Scattering and Dynamic Light Scattering results. Formation of a polysiloxane coating onto the surface of the pigment particles was confirmed by studying the interactions of the polymer molecules with Fe2O3 surfaces by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy techniques.

Practical implications

The surface-treated red Fe2O3 particles with improved dispersion stability can be important components of various formulations in applications such as the colouring of the cement or inorganic pigment-based paint formulations.

Originality/value

The study provides mechanistic insights about the interactions of amino-polysiloxane with the red Fe2O3 particles. The process of surface modification of red Fe2O3 particles with the amino-functional polysiloxane showed increased hydrophobicity and dispersion stability which is an important requirement of the pigment-based formulations in real applications.

Details

Pigment & Resin Technology, vol. 43 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 September 2013

Xingling Tian, Naisheng Li, Zhiguo Zhang, Xu Chen, Yang Wang and Wolfgang Peter Weinhold

The aim of this study was to investigate the effectiveness of restoration of gold foils on Dazu Grottoes using different parylene coatings.

Abstract

Purpose

The aim of this study was to investigate the effectiveness of restoration of gold foils on Dazu Grottoes using different parylene coatings.

Design/methodology/approach

The gold foil samples were applied with two types of parylene coating with six different thicknesses, C‐10, C‐15, C‐20, N‐10, N‐20, N‐25, respectively. Electrochemical impedance, surface morphology, and hydrophobicity properties were used to examine the behavior of the coatings.

Findings

The results showed that an increase in electrochemical corrosion resistance was observed as the degree of coating thickness was increased for both C‐parylene and N‐parylene coatings. In addition, the surface morphology study, using 3D topography measurement, indicated that the surface roughness was decreased for all parylene coatings. Furthermore, the parylene‐C coating was comparatively more effective than was the parylene‐N coating.

Originality/value

The results obtained from the three methods were in close agreement. This is an indication that the parylene‐C coating can be used to restore the gold foils on Dazu Grottoes and to support future restoration and consolidation to be applied on site on the Grottoes.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 228