Search results

1 – 10 of over 11000
Article
Publication date: 1 October 2000

Radosllaw Werner, Andrzej Krysztafkiewicz and Teofil Jesionowski

Studies on the surface modification of sodium‐aluminium silicate P‐820 using silane coupling agents are described. The best modifiers were selected, which induced a change…

Abstract

Studies on the surface modification of sodium‐aluminium silicate P‐820 using silane coupling agents are described. The best modifiers were selected, which induced a change of the silicate surface from hydrophilic to hydrophobic. Physicochemical analyses of the modified silicate were performed. The methods of evaluating silicate surface modification degree were presented. The degree of hydrophobization of silicate surface was determined by a calorimetric method. Near infra‐red spectroscopy (NIR) was used to determine the degree of condensation of the silicate surface silanol groups. Studies on morphology and microstructure using transmission electron microscopy (TEM) were performed. Attempts were made to apply the unmodified and modified sodium‐aluminium silicate P‐820 as filler and pigment in silicate and dispersion paints.

Details

Pigment & Resin Technology, vol. 29 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 June 2016

Binnur Sagbas

The aim of this study is to determine the effect of argon plasma surface modification on tribological properties of conventional ultra-high molecular weight polyethylene…

Abstract

Purpose

The aim of this study is to determine the effect of argon plasma surface modification on tribological properties of conventional ultra-high molecular weight polyethylene (UHMWPE) and vitamin E-blended UHMWPE. In previous studies, some researchers conducted a study on argon plasma surface modification of UHMWPE, but there is no study about argon plasma surface modification of VE-UHMWPE. So another objective of this paper is to compare the results for both the material groups.

Design/methodology/approach

UHMWPE and vitamin E-blended UHMWPE sample surfaces were modified by microwave-induced argon plasma to increase tribological properties of the materials. The modified surfaces were evaluated in terms of wettability and wear behavior. Wettability of the surfaces was determined by contact angle measurements. Wear behavior was examined by ball-on-disc wear tests under lubrication with 25 per cent bovine serum.

Findings

Argon plasma surface modification enhanced the wear resistance and surface wettability properties of conventional UHMWPE and VE-UHMWPE. Wear factor of argon plasma-treated samples reduced, but for VE-UHMWPE samples, this reduction was not as high as the conventional UHMWPE’s wear factor.

Originality/value

In previous studies, some researchers have studied on argon plasma surface modification of UHMWPE, but there is no study about argon plasma surface modification of VE-UHMWPE.

Details

Industrial Lubrication and Tribology, vol. 68 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 August 2012

Bilal Mkhlef, Andy Cobley, Larysa Paniwnyk and Tim Mason

The purpose of this paper is to develop an optimised sonochemical surface modification process which could be operated at low temperature and which uses non‐hazardous…

Abstract

Purpose

The purpose of this paper is to develop an optimised sonochemical surface modification process which could be operated at low temperature and which uses non‐hazardous chemistry with short treatment times. A range of sonochemical parameters such as ultrasonic intensity/power and process temperature were investigated.

Design/methodology/approach

A 20 kHz ultrasonic probe was used as the ultrasonic source. Ultrasound was applied through deionised water (DI) to sonochemically surface modify a high Tg epoxy laminate material (Isola 370 HR). The efficiency of the sonochemical surface modification process was determined by weight loss, roughness, adhesion and scanning electron microscopy (SEM).

Findings

This study has confirmed that ultrasound has the ability to surface modify a high Tg epoxy substrate material (Isola 370 HR). Weight loss and roughness values were increased by using an optimised ultrasonic process compared to control samples which were processed under “silent” conditions. Adhesion testing showed an improvement in the adhesion level between the surface and the subsequently electroless plated copper.

Originality/value

Surface modification of high Tg materials generally utilizes wet chemical methods. These processes involve using hazardous chemicals, high temperatures, require high volumes of water for rinsing and need relatively long immersion times. This research has shown that by optimising ultrasonic parameters, surface modification can be brought about in deionised water (DI) at low temperature.

Article
Publication date: 28 August 2007

Andy Cobley and Tim Mason

This paper sets out to give an introduction to sonochemistry and the effects brought about by the application of ultrasound that might be useful in surface modification;…

Abstract

Purpose

This paper sets out to give an introduction to sonochemistry and the effects brought about by the application of ultrasound that might be useful in surface modification; and to show the feasibility of sonochemical surface modification in water on a range of materials employed in electronic manufacturing.

Design/methodology/approach

Ultrasound was applied through DI water for the surface modification of four materials: a ceramic, a polyphenylene ester (polystyrene polymer (Noryl HM4025)), an acrylonitrile‐butadiene‐styrene/polycarbonate (ABS/PC‐Cycolac S705), and an FR4 laminate (Isola Duraver 104). The efficacy of the treatment was determined by weight loss, scanning electronic microscopy, contact angle and roughness.

Findings

Ceramic and Noryl materials can be surface modified sonochemically in DI water. Weight loss results suggested that, this was also the case for the Duraver laminate but the ABS/PC substrate was least affected by treatment in an ultrasonic field under these benign processing conditions.

Originality/value

Traditional “wet” surface modification techniques often use hazardous chemistry, high‐process temperatures, copious rinsing and long dwell times. This research programme addresses these issues by evaluating sonochemical surface modification techniques with the objective of producing a one‐step process using benign chemistry at lower temperature with less rinsing.

Details

Circuit World, vol. 33 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 16 June 2021

Zrinka Buhin Šturlić, Mirela Leskovac, Krunoslav Žižek and Sanja Lučić Blagojević

The purpose of this paper is to prepare stabile emulsions with 0–15% of colloidal silica and high monomer/water ratio and to investigate the influence of silica addition…

Abstract

Purpose

The purpose of this paper is to prepare stabile emulsions with 0–15% of colloidal silica and high monomer/water ratio and to investigate the influence of silica addition and surface modification on the polyacrylate properties.

Design/methodology/approach

Improving the properties of the composite can be achieved by optimizing the compatibility between the phases of the composite system with improving the interactions at the matrix/filler interface. Therefore, the silica surface was modified with nonionic emulsifier octylphenol ethoxylate, cationic initiator 2,2'-azobis-(amidinopropane dihydrochloride) and 3-methacryloxypropyltrimethoxysilane and polyacrylate/silica nanocomposites were prepared via in situ emulsion polymerization. Particle size distribution, rheological properties of the emulsions and morphology, thermal properties and mechanical properties of the film prepared from the emulsions were investigated.

Findings

Polyacrylate/silica systems with unmodified silica, silica modified with nonionic emulsifier and cationic initiator have micrometer, while pure PA matrix and systems with silica modified with silane have nanometer particle sizes. Addition and surface modification of the filler increased emulsion viscosity. Agglomeration of silica particles in composites was reduced with silica surface modification. Silica filler improves thermal stability and tensile strength of polyacrylate.

Originality/value

This paper provides broad spectrum of information depending on filler surface modification and latex preparation via in situ emulsion polymerization and properties with high amount of filler and monomer/water ratio with the aim that prepared latex is suitable for film formation and final application.

Details

Pigment & Resin Technology, vol. 51 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 March 2017

Wengang Chen, Xueyuan Liu and Lili Zheng

This paper aims to clarify the friction properties of 304 steel surface modification. The surface modification includes laser texturing processing and nitriding treatment…

157

Abstract

Purpose

This paper aims to clarify the friction properties of 304 steel surface modification. The surface modification includes laser texturing processing and nitriding treatment on 304 steel surface, and then the friction properties’ test was conducted on different friction directions and different upper test samples by using microfriction and wear testing machine.

Design/methodology/approach

The diameter and spacing of 100-, 150-, 200-, 300-μm pit array on the surface of 304 steel were calculated using a M-DPSS-50 semiconductor laser device. Then, the textured surface was nitriding-treated using a nitriding salt bath device. The chemical composition, surface morphology and surface microhardness of the composite-modified surface were measured by X-ray diffraction and by using an optical microscope and a microhardness tester. The tribological characteristics of the composite-modified surface were tested by MRTR microcomputer-controlled multifunctional friction and wear testing machine.

Findings

The result showed that a rule pit texture surface was obtained by the texture processing. The microhardness of nitriding treatment surface reached 574.27HV0.1, which significantly higher than 222.58HV0.1 of 304 steel. The composite-modified surface has excellent anti-friction and wear resistance properties when the upper specimen was GCr15 steel and ZrO2, respectively. The composite-modified surface has excellent anti-friction and anti-wear properties after long time friction under different angles. However, the friction coefficient and wear morphology of the friction pairs are not affected by the friction angle.

Research limitations/implications

Because of the chosen research approach, the research results may lack generalizability. Therefore, researchers are encouraged to test the proposed propositions further.

Practical implications

The paper conducted a systematic study of the tribological characteristics of 304 steel composite modification surface and provided a good basis for the extensive application of 304 steel.

Social implications

The study provides a good basis for the extensive application of 304 steel.

Originality/value

This paper fulfils an identified need to study the extensive application of 304 steel.

Details

Industrial Lubrication and Tribology, vol. 69 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 2001

Etsuo Marui and Hiroki Endo

In this study, we examined the improvements in friction and wear properties between steels for aircraft parts, resulting from the surface modifications with electroless…

Abstract

In this study, we examined the improvements in friction and wear properties between steels for aircraft parts, resulting from the surface modifications with electroless plating film and amorphous carbon coating or diamond‐like carbon (DLC) coating. Friction and wear properties are measured using a pin‐on‐flat wear‐testing machine with reciprocating sliding. From measurements of the coefficient of friction and wear amount, observations during sliding motion and visual inspection of wear traces, the following was clarified. A remarkable improvement of friction and wear properties is realized by DLC coating. Electroless plating increased the hardness of the plated surface considerably. However, it does not contribute to improved friction and wear properties.

Details

Industrial Lubrication and Tribology, vol. 53 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 1999

Andrzej Krysztafkiewicz and Slawomir Binkowski

Surface of precipitated silica was modified with 3‐aminopropyltriethoxysilane. The optimum solvent was selected, in which the silane coupling agent was deposited on silica…

1319

Abstract

Surface of precipitated silica was modified with 3‐aminopropyltriethoxysilane. The optimum solvent was selected, in which the silane coupling agent was deposited on silica surface. Basic physicochemical properties of the modified silica were estimated. Methods of evaluating silica surface modification extent were presented, taking advantage first of all of its altered hydrophilicity and of differences in condensation extent of surface silanol groups. The modified silica was used as adsorbent capable of trapping water soluble organic amines.

Details

Pigment & Resin Technology, vol. 28 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 October 2001

Teofil Jesionowski

The surface character of titanium dioxide (rutile) was altered by surface modification. Silane coupling agents were used as modifiers. Physicochemical properties of the…

Abstract

The surface character of titanium dioxide (rutile) was altered by surface modification. Silane coupling agents were used as modifiers. Physicochemical properties of the obtained products were evaluated. Effects of the modifier concentration on changes in hydrophilic/hydrophobic properties of the surface were estimated. The tendency to form primary and secondary agglomerate structures was defined using dynamic light scattering and examining morphology and surface structure with the use of scanning electron microscopy. Specific surface area and pore volume were also measured in unmodified and modified titanium white.

Details

Pigment & Resin Technology, vol. 30 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 May 2016

Song Weiwei, Xiaojing Xu, Dunwen Zuo and Jianli Wang

This paper aims to investigate the modification of surface of a copper alloy by friction stir surface processing (FSSP).

Abstract

Purpose

This paper aims to investigate the modification of surface of a copper alloy by friction stir surface processing (FSSP).

Design/methodology/approach

The metallographic condition of the surface modification was observed using microscopy. Electrochemical corrosion tests were carried out on the modified surface and the corroded surface was observed by scanning electron microscopy (SEM).

Findings

The test results showed that FSSP resulted in refinement of the surface grains of the copper alloy. The degree of refinement was increased with rotation speed and increased in the descending distance of the stirring tool. The corrosion resistance of the modified surface was superior to the base metal except for the surface generated by a rotation speed of 800 rpm and a descending distance 0.1 mm. For the surface modification of the rotation speed of 800 rpm, its corrosion resistance was lower than for the other two rotation speeds. When the rotation speed is specified, the corrosion resistance is improved with increased descending distance. When the descending distance is specified, the corrosion resistance is improved with the rotation speed.

Originality/value

In this study, it was confirmed that the corrosion resistance of the surface modification was best at the rotation speed 1200 rpm and descending distance 0.2 mm.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 11000