Search results

1 – 10 of 55
To view the access options for this content please click here
Article
Publication date: 1 February 2008

P. Sathiya, S. Aravindan and A. Noorul Haq

Friction welding is a solid state bonding process, where the joint between two metals has been established without melting the metal. The relative motion between the…

Abstract

Friction welding is a solid state bonding process, where the joint between two metals has been established without melting the metal. The relative motion between the faying surfaces (surfaces to be joined) under the application of pressure promotes surface interaction, friction and heat generation which subsequently results in joint formation. Stainless steel is an iron based alloy, contains various combinations of other elements to give desired characteristics, and found a wider range of applications in the areas such as petro‐chemical, fertilizer, automotive, food processing, cryogenic, nuclear and beverage sectors. In order to exploit the complete advantages of stainless steels, suitable joining techniques are highly demanded. The Friction welding is an easily integrated welding method of stainless steel, which considered as non‐weldable through fusion welding. Grain coarsening, creep failure and failure at heat‐affected zone are the major limitations of fusion welding of similar stainless steels. Friction welding eliminates such pitfalls. In the present work an attempt is made to investigate experimentally, the mechanical and metallurgical properties of friction welded joints, namely, austenitic stainless steel (AISI 304) and ferritic stainless steel (AISI 430). Evaluation of the characteristics of welded similar stainless steel joints are carried out through tensile test, hardness measurement and metallurgical investigations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 26 August 2014

Hairen Wang, Minya Li, June Qu, Zhiyong Cao, Geng Chen and Yang Zhou

The purpose of this paper is to construct a self-assembled double layer of organosilane on the surface of stainless steel and to investigate its corrosion inhibitive…

Abstract

Purpose

The purpose of this paper is to construct a self-assembled double layer of organosilane on the surface of stainless steel and to investigate its corrosion inhibitive capability.

Design/methodology/approach

A monolayer of 3-glycidoxypropyltrimethoxysilane (GPTMS) was grafted onto an oxidized AISI 430SS (AISI 430 stainless steel) surface substrate from dry toluene solution. The hydrolysis of 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDS) molecules was used to anchor a second organic layer from mixed water-ethanol solution. The adsorption behavior and corrosion inhibition properties of the monolayer and also the bilayer were investigated by potentiodynamic polarization, scanning electron microscope (SEM), Fourier transformed infrared spectroscopy (FTIR) and contact angle measurements.

Findings

The GPTMS/PFDS bilayer was successfully deposited onto the oxidized AISI 430SS surface. The optimal assembling time for the filming of the first GPTMS monolayer is 6 hours. Suitable values of pH and temperature of the PFDS self-assembly solution were pivotal to the successful deposition of the second layer. Compared to the GPTMS monolayer, the GPTMS/PFDS bilayer exhibited a significant enhancement of the corrosion inhibition performance of AISI 430SS in NaCl solution.

Research limitations/implications

The contact angle value measured on the bilayer-modified surface was somewhat lower than the reported value of a complete fluorinated surface. However, further optimization of the assembling condition is needed to obtain more orderly and denser films.

Originality/value

This paper provides useful information regarding the preparation of an organosilane bilayer on the surface of stainless steel and its corrosion inhibition properties in NaCl solution. It illustrates potential application prospects of GPTMS/PFDS bilayers for surface treatment of stainless steel.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article
Publication date: 2 August 2019

Fupeng Cheng, Jinglong Cui, Shuai Xu, Hongyu Wang, Pengchao Zhang and Juncai Sun

The purpose of this paper is to improve the surface electrical conductivity and corrosion resistance of AISI 430 stainless steel (430 SS) as bipolar plates for proton…

Abstract

Purpose

The purpose of this paper is to improve the surface electrical conductivity and corrosion resistance of AISI 430 stainless steel (430 SS) as bipolar plates for proton exchange membrane fuel cells (PEMFCs), a protective Nb-modified layer is formed onto stainless steel via the plasma surface diffusion alloying method. The effect of diffusion alloying time on electrochemical behavior and surface conductivity is evaluated.

Design/methodology/approach

In this work, the surface electrical conductivity and corrosion resistance of modified specimen are evaluated by the potentiodynamic and potentionstatic polarization tests. Moreover, the hydrophobicity is also investigated by contact angle measurement.

Findings

The Nb-modified 430 SS treated by 1.5 h (1.5Nb) presented a lower passivation current density, lower interfacial contact resistance and a higher hydrophobicity than other modified specimens. Moreover, the 1.5 Nb specimen presents a smoother surface than other modified specimens after potentionstatic polarization tests.

Originality/value

The effect of diffusion alloying time on electrochemical behavior, surface conductivity and hydrophobicity of modified specimen is evaluated. The probable anti-corrosion mechanism of Nb-modified specimen in simulated acid PEMFC cathode environment is presented.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article
Publication date: 27 September 2018

Fupeng Cheng, Jinglong Cui, Shuai Xu, Song Li, Pengchao Zhang and Juncai Sun

The purpose of this study is to improve the performance of AISI 430 stainless steel (430 SS) in increasing its oxidation resistance, suppressing coating spalling and…

Abstract

Purpose

The purpose of this study is to improve the performance of AISI 430 stainless steel (430 SS) in increasing its oxidation resistance, suppressing coating spalling and cracking, sustaining appropriate conductivity and blocking Cr evaporation as an interconnect material for intermediate temperature solid oxide fuel cells; a protective co-contained coating is formed onto stainless steel via the surface alloying process and followed by thermal oxidation.

Design/methodology/approach

In this work, oxidation behavior of coated specimen is studied during isothermal and cyclic oxidation measurements. Moreover, the conductivity is also investigated by area specific resistance (ASR) measurement.

Findings

Co-contained spinel layer shows an outstanding performance in preventing oxidation and improving conductivity compared with uncoated specimens. The protective spinel coating also reduces the ASR for coated specimen (0.0576O cm2) as compared to the uncoated specimen (1.87296O cm2) after isothermal oxidation.

Originality/value

The probable mechanism of co-contained alloy converting into spinel and the spinel transfer electron is presented.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article
Publication date: 20 February 2019

Jixin Han, Haibang Zhang, Juncai Sun, Wenyuan Zhao and Jinlong Cui

The purpose of this study is to improve the surface electrical conductivity and corrosion resistance of AISI430 stainless steel (430 SS) as bipolar plates for direct…

Abstract

Purpose

The purpose of this study is to improve the surface electrical conductivity and corrosion resistance of AISI430 stainless steel (430 SS) as bipolar plates for direct formic acid fuel cell (DFAFC).

Design/methodology/approach

The niobium diffusion layers have been successfully synthesized on 430 SS substrate by the plasma surface diffusion alloying technique under different diffusion alloying time.

Findings

The surface morphology of Nb-modified 430 SS prepared under the diffusion alloying time of 2 h is more homogeneous, relatively sleek and compact without surface micropore and other common surface blemishes. The potentiostatic and potentiodynamic polarization measurements manifest that Nb-modified 430 SS prepared under the diffusion alloying time of 2 h enormously ameliorate the corrosion resistance of bare 430 SS compared with other Nb-modified 430 SS samples and its corrosion current density is maintained at −1.4 µA cm−2 in simulated anodic environment of DFAFC (0.05 M H2SO4 + 2 ppm HF + 10 M formic acid at 50 °C).

Originality/value

The effect of diffusion alloying time on the corrosion resistance and surface conductivity of Nb-modified 430 SS has been carefully studied. The Nb-modified 430 SS samples prepared at the diffusion alloying time of 2 h have the best surface electrical conductivity and corrosion resistance in the simulated anodic environment of DFAFC.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article
Publication date: 30 May 2019

Pramod Kumar and Amar Nath Sinha

The present research work aims to study the effect of average beam power (laser process parameters) on the overlapping factor, depth of penetration (DOP), weld bead width…

Abstract

Purpose

The present research work aims to study the effect of average beam power (laser process parameters) on the overlapping factor, depth of penetration (DOP), weld bead width, fusion zone and heat affected zone (HAZ) in laser welding of 304L and st37 steel. Back side and top surface morphology of the welded joints have also been studied for varying average beam power.

Design/methodology/approach

Laser welding of austenitic stainless steel (304L) and carbon steel (st37) was carried out using Nd:YAG laser integrated with ABB IRB 1410 robot in pulse mode. The selection of laser process parameters was based on the specification of available laser welding machine. Dissimilar laser welding of 304L and st37 carbon steel for full depth of penetration have been performed, with varying average beam power (225-510W) and constant welding speed (5mm/s) and pulse width (5ms).

Findings

Recrystallized coarse grains were observed adjacent to the fusion zone and nucleated grains were seen away from the fusion zone towards carbon steel. Overlapping factor and HAZ width st37 side increases with increase in average beam power whereas top weld bead width increases first, attains maximum value and then subsequently decreases. Bottom weld bead width increases with increase in average beam power. The mechanical properties namely microhardness and tensile strength of the welded joints have been investigated with varying average beam power.

Originality/value

In the recent development of the automobile, power generation and petrochemical industries the application of dissimilar laser welding of austenitic stainless steel (304L) and carbon steel (st37) are gaining importance. Very limited work have been reported in pulsed Nd:YAG dissimilar laser welding of austenitic stainless steel (304L) and carbon steel (st37) for investigating the effect of laser process parameters on weld bead geometry, microstructural characterization and mechanical properties of the welded joint.

Details

World Journal of Engineering, vol. 16 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 1 July 1973

A. Luffkin

For many years the effect of sulphuric anhydride in the atmosphere has been recognised, such as in the report by Thomson. As an example of this, consider some of the work…

Abstract

For many years the effect of sulphuric anhydride in the atmosphere has been recognised, such as in the report by Thomson. As an example of this, consider some of the work reported by Hudson and Stanners, who exposed iron and steel to copper in a variety of environments. When they studied the results, they found a close relationship between the degree of corrosion and the amount of SO2 present, whereas the effect of chlorides was restricted to a narrow test area close to the sea.

Details

Anti-Corrosion Methods and Materials, vol. 20 no. 7
Type: Research Article
ISSN: 0003-5599

To view the access options for this content please click here
Article
Publication date: 14 February 2020

Yamid Núñez, Marcio Mafra, Rigoberto E. Morales, Paulo César Borges and Giuseppe Pintaude

This study aims to assess the performance of SAF 2205 duplex stainless steel against pure wear, tribo-corrosion, corrosion and the synergism between wear and corrosion…

Abstract

Purpose

This study aims to assess the performance of SAF 2205 duplex stainless steel against pure wear, tribo-corrosion, corrosion and the synergism between wear and corrosion. The effect of plasma nitriding conducted at low temperature (380°C) on SAF 2205 steel was analyzed.

Design/methodology/approach

Three systems were used for assessing the synergism between wear and corrosion: tribo-corrosion – wear tests conducted using the micro-scale abrasion test, performed under a slurry of alumina particles containing 3.5% NaCl; pure wear – tests conducted using the previous system but isolated in a glovebox with a 99% N2 atmosphere; and cyclic polarization under 3.5% NaCl solution. A hard nitrided layer of 3 µm thickness was characterized using X-ray diffraction, presenting expanded austenite.

Findings

The wear mode after micro-scale abrasion tests changed in the absence of an oxygen atmosphere. During pure wear, a mixed mode was identified (rolling + grooving), with the grooving mode more intense for the untreated steel. For tribo-corrosion tests, only rolling wear was identified. For all cases, the nitrided samples presented less wear. The corrosion results indicated a higher repassivation potential for the nitrided condition.

Practical implications

The synergism was more positive for the nitrided sample than for the untreated one, which can be considered for surface treatments of duplex stainless steels in practical applications.

Originality/value

A detailed description of wear mechanisms showed a significant change in the presence of oxygen atmosphere, a new approach for isolating pure wear.

Details

Industrial Lubrication and Tribology, vol. 72 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 5 May 2015

Yinhui Yang and Biao Yan

The aim of this paper was to investigate the effect of strain rate on microstructure and corrosion behavior of 2205 duplex stainless steel, after high-temperature…

Abstract

Purpose

The aim of this paper was to investigate the effect of strain rate on microstructure and corrosion behavior of 2205 duplex stainless steel, after high-temperature compression tests.

Design/methodology/approach

The specimens were prepared using a Gleeble3800 thermo-simulation machine over a range of temperatures from 850 to 1,250°C and strain rates from 0.005 to 5 s−1, and the corresponding flow curves and deformation microstructure obtained were further analyzed. To evaluate the effect of strain rate on corrosion behavior, potentiodynamic polarization tests and double-loop electrochemical potentiodynamic reactivation (DL-EPR) were used to characterize the electrochemical performance.

Findings

Compared with strain rate of 0.5 s−1, the worst corrosion resistance behavior from the potentiodynamic polarization test results after deformation at 0.005 s−1 was attributed to more austenite (γ) and ferrite (δ) grain boundaries or δ/γ phase interface formation due to the better effect of γ dynamic recrystallization (DRX) or δ dynamic recovery (DRV). Increasing strain rate to 5 s−1 lowered the corrosion resistance, due to the increase in dislocation density. At the low strain rate of 0.005 s−1, the susceptibility to intergranular corrosion (IGC) was comparatively high after deformation at 1050 and 1150°C with more γ/γ grains and δ/γ phase boundary formation, which was lowered with the strain rate increase to 0.5 s−1, due to suppressing effect of γ DRX.

Originality/value

The paper provides the scientific basis for the practical application of hot working of 2205 duplex stainless steel.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

To view the access options for this content please click here
Article
Publication date: 15 June 2012

Ugur Caligulu, Mustafa Taskin, Haluk Kejanli and Ayhan Orhan

The purpose of this paper is to investigate interface characterization of CO2 laser welded AISI 304 austenitic stainless steel and AISI 1010 low carbon steel couple. Laser…

Abstract

Purpose

The purpose of this paper is to investigate interface characterization of CO2 laser welded AISI 304 austenitic stainless steel and AISI 1010 low carbon steel couple. Laser welding experiments were carried under argon and helium atmospheres at 2000, 2250 and 2500 W heat inputs and 200‐300 cm/min welding speeds.

Design/methodology/approach

The microstructures of the welded joints and the heat affected zones (HAZ) were examined by optical microscopy, SEM, EDS and X‐Ray analysis. The tensile strength of the welded joints was measured.

Findings

The result of this study indicated that the width of welding zone and HAZ became much thinner depending on the increased welding speed. On the other hand, this width widened depending on the increased heat input. Tensile strength values also confirmed this result. The best properties were observed at the specimens welded under helium atmosphere, at 2500 W heat input and at 200 cm/min welding speed.

Originality/value

There are many reports which deal with the shape and solidification structure of the fusion zone of laser beam welds in relation to different laser parameters. However, the effect of all influencing factors of laser welding has up to now not been extensively researched. Much work is required for understanding the combined effect of laser parameters on the shape and microstructure of the fusion zone. This paper, therefore, is concerned with laser power, welding speed, defocusing distance and type of shielding gas and their effects on the fusion zone shape and final solidification structure of some stainless steels.

Details

Industrial Lubrication and Tribology, vol. 64 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 55