Search results

1 – 10 of over 3000
To view the access options for this content please click here
Article
Publication date: 19 May 2021

Batuhan Özakın, Bilal Çolak and Naci Kurgan

The last stage of the cold rolling process is skin-pass rolling and one of its most significant goals is to obtain appropriate topography on the surface of the sheet steel…

Abstract

Purpose

The last stage of the cold rolling process is skin-pass rolling and one of its most significant goals is to obtain appropriate topography on the surface of the sheet steel used extensively such as in automotive industry. The purpose of this paper is to investigate the effect of thickness change and various reduction ratios on roughness transfer of DC04 grade sheet material.

Design/methodology/approach

DC04 grade sheet materials with different reduction ratios and several thicknesses were subjected to skin-pass rolling process in the rolling equipment with a two-high roll. Some roughness parameters were determined as a result of roughness measurements from the surfaces of roughened sheet materials.

Findings

While the roughness transfer is higher in 1-mm thick material in reduction ratios up to 430 micrometers; in reduction ratios above 430 micrometers, it is higher for 1.5-mm thick materials. As the reduction ratio increases in DC04 grade sheet materials, the homogeneity of the roughness distribution in 1-mm thickness sheet material deteriorates, while the roughness distribution in 1.5-mm thickness sheet material is more homogeneous.

Originality/value

This paper demonstrates how material thickness and reduction ratio affect the roughness transfer in skin-pass rolling. The results obtained can be used by optimizing in manufacturing processes.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 14 June 2013

Li‐Ming Chu, Hsiang‐Chen Hsu, Jaw‐Ren Lin and Yuh‐Ping Chang

The purpose of this paper is to explore the pure squeeze elastohydrodynamic lubrication motion of circular contacts with surface roughness under constant load conditions…

Abstract

Purpose

The purpose of this paper is to explore the pure squeeze elastohydrodynamic lubrication motion of circular contacts with surface roughness under constant load conditions. The proposed model can reasonably calculate the effects of surface roughness on the transient pressure profiles, film shapes, and normal squeeze velocities during the pure squeeze process.

Design/methodology/approach

Based on Christensen's stochastic theory, the transient modified Reynolds equation is derived in polar coordinates to consider the effects of surface roughness. The finite difference method and the Gauss‐Seidel iteration method are used to solve the transient modified Reynolds equation, the elasticity deformation equation, load balance equation, and lubricant rheology equations simultaneously.

Findings

The simulation results reveal that the circular type roughness possesses storage oil capacity. Comparatively, the radial type roughness possesses leak oil capacity. Therefore, the film thickness is found with circular type roughness, followed by smooth, and then radial type roughness. In additional, the central dimensionless pressure is found with radial type roughness, followed by smooth, and then circular type roughness.

Originality/value

A numerical method for general applications with surface roughness was developed to investigate the pure squeeze action in an isothermal EHL spherical conjunction under constant load conditions, but without asperities contact.

Details

Industrial Lubrication and Tribology, vol. 65 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 22 May 2007

Jirˇí Militký and Miroslav Mazal

The main aim of this paper is description of new apparatus and approach for contact less evaluation of surface roughness. For characterization of surface roughness, the…

Abstract

Purpose

The main aim of this paper is description of new apparatus and approach for contact less evaluation of surface roughness. For characterization of surface roughness, the procedures based on classical and non‐classical (complexity) parameters are proposed.

Design/methodology/approach

For obtaining the roughness profile in the selected direction (on the line transect of the surface), the special arrangements of textile bend around sharp edge is used. The image analysis is used for extraction of surface profile. The system of controlled movement allows one to obtain surface roughness profile in two dimensions.

Findings

By using aggregation (cut length principle), the roughness resolution is decreased and roughness profile is created without local roughness variation. After application of cut length principle, the direct combination of slices leads to the creation of roughness surface.

Research limitations/implications

There exists plenty of roughness characteristics based on standard statistics or analysis of spatial processes. For evaluation of suitability of these characteristics, it will be necessary to compare results from sets of textile surfaces.

Practical implications

The measurement of fabric roughness by an RCM device is useful as simple tool for description of roughness in individual slices and in the whole rough plane. This method replaces the traditional contact stylus profiling methods

Originality/value

The reconstruction of surface roughness from individual slices. The utilization of aggregation principle for creation of micro and macro roughness. The evaluation of roughness parameters based on the geometrical characteristics, harmonic analysis and complexity indices.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

To view the access options for this content please click here
Article
Publication date: 2 November 2015

Zheng Bo, Qi Zhao, Xiaorui Shuai, Jianhua Yan and Kefa Cen

– The purpose of this paper is to provide a quantitative assessment on the effect of wall roughness on the pressure drop of fluid flow in microchannels.

Abstract

Purpose

The purpose of this paper is to provide a quantitative assessment on the effect of wall roughness on the pressure drop of fluid flow in microchannels.

Design/methodology/approach

The wall roughness is generated by the method of random midpoint displacement (RMD) and the lattice Boltzmann BGK model is applied. The influences of Reynolds number, relative roughness and the Hurst exponent of roughness profile on the Poiseuille number are investigated.

Findings

Unlike the smooth channel flow, Reynolds number, relative roughness and the Hurst exponent of roughness profiles play critical roles on the Poiseuille number Po in rough microchannels. Modeling results indicate that, in rough microchannels, the rough surface configuration intensifies the flow-surface interactions and the wall conditions turn to dominate the flow characteristics. The perturbance of the local flows near the channel wall and the formation of recirculation regions are two main features of the flow-surface interactions.

Research limitations/implications

The fluid flow in parallel planes with surface roughness is considered in the current study. In other words, only two-dimensional fluid flow is investigated.

Practical implications

The LBM is a very useful tool to investigate the microscale flows.

Originality/value

A new method (RMD) is applied to generate the wall roughness in parallel plane and LBM is conducted to investigate the pressure drop characteristics in rough microchannels.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 14 September 2015

Linlin Li, Jiajun Yang and Wenwei Liu

The purpose of this paper is to explore the effect of surface roughness characterized by fractal geometry on squeeze film damping characteristics in damper of the linear…

Abstract

Purpose

The purpose of this paper is to explore the effect of surface roughness characterized by fractal geometry on squeeze film damping characteristics in damper of the linear rolling guide, which has not been studied so far.

Design/methodology/approach

The stochastic model of film thickness between rail and damper is established by using the two-variable Weierstrass–Mandelbrot function defining multi-scale and self-affinity properties of the rough surface topography. The stochastically averaged Reynolds equation is solved by using the variables separation method to further derive the film pressure distribution, the damping coefficient, the damping force and squeeze film time. The effect of surface roughness on squeeze film damping characteristics of the damper is analyzed and discussed through simulation.

Findings

By comparing cases of the rough surface for different fractal parameters and the smooth surface, it is shown that for the isotropic roughness structure, the presence of surface roughness of the damper decreases the squeeze film damping characteristics. It is found that roughness effect on the damping coefficient is associated with the film thickness. In addition, the vibration amplitude effect is negligible for the damper of the linear rolling guide.

Originality/value

To investigate the random surface roughness effect, the rough surface topography of damper of the linear rolling guide is characterized by using the fractal method instead of the traditional mathematical statistics method.

Details

Industrial Lubrication and Tribology, vol. 67 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

To view the access options for this content please click here
Article
Publication date: 12 August 2021

Chong Wang, Yingjie Wang, Kegu Adi, Yunzhong Huang, Yuanming Chen, Shouxu Wang, Wei He, Yao Tang, Yukai Sun, Weihua Zhang, Chenggang Xu and Xuemei He

The purpose of this paper is to establish an accurate model to quantify the effect of conductor roughness on insertion loss (IL) and provide improved measurements and…

Abstract

Purpose

The purpose of this paper is to establish an accurate model to quantify the effect of conductor roughness on insertion loss (IL) and provide improved measurements and suggestions for manufacturing good conductive copper lines of printed circuit board.

Design/methodology/approach

To practically investigates the modified model of conductor roughness, three different kinds of alternate oxidation treatments were used to provide transmission lines with different roughness. The IL results were measured by a vector net analyzer for comparisons with the modified model results.

Findings

An accurate model, with only a 1.8% deviation on average from the measured values, is established. Compared with other models, the modified model is more reliable in industrial manufacturing.

Originality/value

This paper introduces the influence of tiny roughness structures on IL. Besides, this paper discusses the effect of current distribution on IL.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

To view the access options for this content please click here
Article
Publication date: 23 August 2021

Mahmoud Heshmat and Yasser Abdelrhman

Fused deposition modeling (FDM) is one of the most adopted additive manufacturing techniques to produce prototypes and/or final parts regardless of geometrical complexity…

Abstract

Purpose

Fused deposition modeling (FDM) is one of the most adopted additive manufacturing techniques to produce prototypes and/or final parts regardless of geometrical complexity restrictions. One of the most challenging aspects of this technology is the attainable roughness. The purpose of this study is to evaluate the capability of the slurry impacts to improve the surface roughness of parts fabricated using FDM. Moreover, a regression model for predicting the values of surface roughness was developed.

Design/methodology/approach

The developed technique imposes a silica–water mixture which softens the staircase on the surface and leaves it smoother. The process introduces three main factors: building orientation; layer thickness; and impact angle of the slurry particles. Experimentally, a test rig was used to evaluate the effect of these factors on surface roughness. Statistically, Analysis of variance (ANOVA) and regression analysis were conducted to study the contribution of the individual factors on the roughness.

Findings

The results reveal that the effect of slurry impacts has a good impact on surface roughness, and the three factors have significant effect on surface roughness.

Originality/value

This paper contributes to new knowledge by providing a new technique for enhancing the surface roughness of FDMed products. ANOVA and regression analysis is a useful tool to parametrically study the surface roughness in terms of building and testing factors.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article
Publication date: 8 July 2021

M. Balasubramanian and S. Madhu

The purpose of this study is to bring out the machining characteristics of abrasive jet machining on carbon fibre reinforced thermoplastic composites utilized in aerospace…

Abstract

Purpose

The purpose of this study is to bring out the machining characteristics of abrasive jet machining on carbon fibre reinforced thermoplastic composites utilized in aerospace and biomedical applications. Biocompatibility materials such as carbon fibres and polyether thermoplastics, like polyether ether ketone (PEEK) are widely used in trauma and orthopaedic surgery. Due to the heterogeneity, layered construction of reinforcing phase bonds with a resin matrix and abrasiveness of the reinforcing fibre, traditional drilling of carbon fibre-reinforced composites (CFRPs) are always challenging task.

Design/methodology/approach

An investigation is carried out using abrasive jet machine for drilling PEEK filled with 30 Wt.% carbon fibre (CF 30) using threaded and unthreaded nozzle to study the effect of abrasive jet process variables on surface roughness (Ra) and delamination factor (DF). Pressure (P) and stand-off distance (SOD) as important technological abrasive jet factors were evaluated. It is found that higher abrasive jet pressure and minimum SOD maybe selected to achieve minimum delamination.

Findings

The study further reported that the threaded nozzle minimized the surface roughness by 43% and delamination factor up to 12%.

Originality/value

This study of experimenting and observing the machining characteristics of CF30 by using a threaded nozzle is being tried for the first time and the results are deliberated.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 24 December 2020

Younes Ech-charqy, Rachid Radouani and Mohamed Essahli

The purpose of this paper is to realize an effective hybrid modeling (empirical-geometric) in order to describe the real behavior of the average roughness variation of the…

Abstract

Purpose

The purpose of this paper is to realize an effective hybrid modeling (empirical-geometric) in order to describe the real behavior of the average roughness variation of the workpiece surface in turning with an elementary operation of superfinishing, using different analytic methodologies. The previous works are limited to describe the roughness for the usual elementary operations, citing the roughing and the semi-finishing, while this analysis builds technical rails for the industrialists in order to well conduct the operation of superfinishing in turning, by choosing the cutting parameters from the proposed model.

Design/methodology/approach

A statistical analysis of the average roughness measurements capability study, by the statistical process control method SPC and the ANN artificial neuron network, Levenberg–Marquardt's methods modified Monte Carlo SRM response surface.

Findings

The objective of this work was to describe the average roughness generated by the penetration of the cutting tool into a part in superfinishing turning. First, the authors used artificial colony analysis to determine optimal cutting conditions in order to have an average roughness lower than 0.8 µm. The cutting conditions selected: (1) the feed rate f ϵ [0.05; 0.2] mm/rev; (2) the pass depth ap ϵ [0.25; 1] mm; (3) the corner radius re = 0.2 mm and (4) cutting speed Vc ϵ [75; 100] m/min.

Originality/value

This work consists to realize an effective hybrid modeling (empirical-geometric) in order to describe the real behavior of the average roughness variation of the workpiece surface in turning with an elementary operation of superfinishing, using different analytic methodologies. The previous works are limited to describe the roughness for the usual elementary operations, citing the roughing and the semi-finishing, while this analysis builds technical rails for the industrialists in order to well conduct the operation of superfinishing in turning, by choosing the cutting parameters from the proposed model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 10 July 2020

Swapnil Vyavahare, Shailendra Kumar and Deepak Panghal

This paper aims to focus on an experimental study of surface roughness, dimensional accuracy and time of fabrication of parts produced by fused deposition modelling (FDM…

Abstract

Purpose

This paper aims to focus on an experimental study of surface roughness, dimensional accuracy and time of fabrication of parts produced by fused deposition modelling (FDM) technique of additive manufacturing. The fabricated parts of acrylonitrile butadiene styrene (ABS) material have pyramidal and conical features. Influence of five process parameters of FDM, namely, layer thickness, wall print speed, build orientation, wall thickness and extrusion temperature is studied on response characteristics. Furthermore, regression models for responses are developed and significant process parameters are optimized.

Design/methodology/approach

Comprehensive experimental study is performed using response surface methodology. Analysis of variance is used to investigate the influence of process parameters on surface roughness, dimensional accuracy and time of fabrication in both outer pyramidal and inner conical regions of part. Furthermore, a multi-response optimization using desirability function is performed to minimize surface roughness, improve dimensional accuracy and minimize time of fabrication of parts.

Findings

It is found that layer thickness and build orientation are significant process parameters for surface roughness of parts. Surface roughness increases with increase in layer thickness, while it decreases initially and then increases with increase in build orientation. Layer thickness, wall print speed and build orientation are significant process parameters for dimensional accuracy of FDM parts. For the time of fabrication, layer thickness and build orientation are found as significant process parameters. Based on the analysis, statistical non-linear quadratic models are developed to predict surface roughness, dimensional accuracy and time of fabrication. Optimization of process parameters is also performed using desirability function.

Research limitations/implications

The present study is restricted to the parts of ABS material with pyramidal and conical features only fabricated on FDM machine with delta configuration.

Originality/value

From the critical review of literature it is found that some researchers have made to study the influence of few process parameters on surface roughness, dimensional accuracy and time of fabrication of simple geometrical parts. Also, regression models and optimization of process parameters has been performed for simple parts. The present work is focussed on studying all these aspects in complicated geometrical parts with pyramidal and conical features.

Details

Rapid Prototyping Journal, vol. 26 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 3000