Search results

1 – 10 of over 2000
Article
Publication date: 31 July 2018

Shariful Islam, Shaikh Md. Mominul Alam and Shilpi Akter

The purpose of this paper is to facilitate the production of cotton spandex woven fabric with some user-friendly properties like wearer comfort, super stretch and elasticity. The…

Abstract

Purpose

The purpose of this paper is to facilitate the production of cotton spandex woven fabric with some user-friendly properties like wearer comfort, super stretch and elasticity. The findings could contribute to ease spandex production and to optimize its property of elasticity. Stretch or a super stretch property is generally desirable, as it can increase the comfort level of those who wear it. In this experiment, the difficulties which were identified while manufacturing cotton spandex woven fabric resolved after identification.

Design/methodology/approach

In this experiment, three types of cotton spandex woven fabrics, with different composition and constructions, were used to find out their elastic properties. Temperature ranging from 160°C to 200°C with the machine speed of 20 to 26 MPM (meter per minute) was applied with an adjusted industrial setting with the facilities of a stenter machine to optimize the properties of cotton spandex woven fabric.

Findings

The findings establish that the temperature treatment closely compacted the elastic portions with cotton fibers, giving stability to the spandex yarn, which as a result, influenced cotton spandex woven fabric’s elastic properties, namely, stretch, growth and recovery. The consequences of temperature on cotton spandex yarns were assessed using a microscope, and the results were subsequently analyzed.

Research limitations/implications

Because of the poor facilities in testing laboratory, only few tests with microscopic evaluation were conducted to assess the elastic performances of cotton spandex woven fabric.

Practical implications

It is a practice-based research, and the findings could be beneficial to personnel in the textile industry, who are responsible for the manufacturing of cotton spandex woven fabric.

Social implications

This research could enhance the wearer’s satisfaction, with some comfort elastic properties, which can have a positive influence over spandex clothing industries.

Originality/value

This research establishes that heat setting had a progressive influence on the production of cotton spandex woven fabric and for the optimization of its elastic performances. This research opens a possible way for scholars to further study in this field.

Details

Research Journal of Textile and Apparel, vol. 22 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 August 2015

Karthikeyan M Ramasamy

Organic cotton, which is produced without any chemical fertilizers and pesticides, is playing a vital role in creating a less harmful environment. An investigation of the…

Abstract

Organic cotton, which is produced without any chemical fertilizers and pesticides, is playing a vital role in creating a less harmful environment. An investigation of the properties of weft knitted fabrics produced from organically made cotton vis-à-vis regular cotton knitted fabric is reported. The yarn is made with both organically produced and regular cotton, and the fabric is knitted by using single jersey machines. The fabrics are subsequently dyed by using natural dyes. The naturally dyed knitted fabrics are examined for shrinkage, bursting strength, abrasion resistance, and colour fastness properties. The result shows that the knitted fabrics produced from organically grown cotton is superior in performance in comparison with fabrics produced from regular cotton.

Details

Research Journal of Textile and Apparel, vol. 19 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 December 2018

Ashwini A. Patil, Saptarshi Maiti and Ravindra V. Adivarekar

Cotton being an anionic fiber can be dyed with direct, reactive, vat and sulfur dyes but cannot be dyed with acid dyes due to their chemical differences. But there are certain…

Abstract

Purpose

Cotton being an anionic fiber can be dyed with direct, reactive, vat and sulfur dyes but cannot be dyed with acid dyes due to their chemical differences. But there are certain advantages of acid dyes like acid dyeing is the simplest method than the other classes of dyes; and it offers various intense and bright shades. So, the purpose of this paper is to focus on acid dyeing of cotton fabric after its chemical modification.

Design/methodology/approach

Such modification of cotton fabric has been achieved using poly(amido)amine dendrimer (PAMAM) treatment. The current work is based on the synthesis of a full-generation PAMAM dendrimer (G0) and its application onto the cotton fabric for modifying the cotton substrate by the exhaust and padding method.

Findings

The treatment of the dendrimer on cotton fabric has been analyzed by Fourier transform infrared spectroscopy and scanning electron microscopy. The dyeing results in terms of color strength of the treated cotton fabrics are compared with those of conventional acid dyed silk fabric. The fastness assessments such as wash, light and rubbing fastnesses after dyeing of treated cotton fabrics are also performed and found to be satisfactory.

Originality/value

This paper can be used in the application of synthesized poly(amido)amine dendrimer in acid dyeing of cotton.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 19 January 2023

Haymanot Enawgaw

The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton

Abstract

Purpose

The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton fabric to improve its properties or to add some functional properties. The paper presented mostly studied research works that brought a significant surface improvement on cotton fabric.

Design/methodology/approach

Different previous works on surface modifications of cotton fabrics such as pilling, wrinkle and microbial resistance, hydrophobicity, cationization, flame retardancy and UV-protection characteristics were studied and their methods of modification including the main findings are well reported in this paper.

Findings

Several modification treatments on surface modification of cotton fabrics indicated an improvement in the desired properties in which the modification is needed. For instance, the pilling tendency, wrinkling, microbial degradation and UV degradation drawbacks of cotton fabric can be overcome through different modification techniques.

Originality/value

To the best of the author’s knowledge, there are no compressive documents that covered all the portions presented in this review. The author tried to cover the surface modifications done to improve the main properties of cotton fabric.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 22 October 2018

Kh.M. Mostafa, Heba Ameen, Mahmoud Morsy, Amal El-Ebissy, Mohamed Adel and Ali Salah

This study aims to explore the incorporation of starch nanoparticles (SNPs) in cross-linking formulation of cotton fabrics to see their impact on fabric performance like tensile…

Abstract

Purpose

This study aims to explore the incorporation of starch nanoparticles (SNPs) in cross-linking formulation of cotton fabrics to see their impact on fabric performance like tensile strength, dry wrinkle recovery angles, elongation at break, degree of whiteness and increase in weight as well as durability.

Design/methodology/approach

SNPs of size around 80-100 nm were successfully prepared from native maize starch by Nano precipitation technique and confirmed instrumentally by scanning electron microscope (SEM), transmittance electron microscope (TEM), Fourier transformer infrared (FTIR) spectroscopy and particle size analyzer. The latter were incorporated in cross-linking formulation of cotton fabrics encompassing different concentrations of citric acid and sodium hypophosphite at different curing time and temperature in 100 ml distilled water to a wet pickup of ca. 85 per cent. The fabric samples were dried for 3 min at 85°C and cured at specified temperatures for a specified time intervals in thermo fixing oven according to pad-dry-cure method.

Findings

FTIR spectra and SEM micrograph signified the chemical structure and surface morphology of cotton fabric before and after finishing in absence and presence of SNPs. Cotton fabric samples finished in presence of SNPs showed a higher tensile strength, elongation at break, comparable dry wrinkle recovery angles and degree of whiteness than that finished in their absence. On the other hand, the enhancement in the aforementioned performance reflects the positive impact of incorporation of SNPs in textile finishing especially with strength properties; which are one of the important requirements for industrial fabrics that can be used widely in heavy-duty applications.

Research limitations/implications

SNPs with its booming effect with respect to biodegradability, reactivity and higher surface area can be used as a novel reinforcement permanent finish for cotton fabrics instead of more hazardous materials likes poly acrylate and monomeric compounds.

Practical implications

As SNPs biopolymers is one of the important reinforcement agents, so it was expected that it would minimize the great loss in strength properties during easy-care cotton finishing and improve the fabric performance.

Originality/value

The novelty addressed here is undertaken with a view to remediate some of the serious defects of easy-care cotton fabrics using poly carboxylic acids; especially with the great loss in strength properties by virtue of using SNPs as a permanent finish. Besides, to the authors’ knowledge, there is no published work so far concerning the use of SNPs as an innovative base for production of easy-care finished cotton textiles with high performance.

Article
Publication date: 29 July 2014

Rachel H. McQueen, James J. Harynuk, Wendy V. Wismer, Monika Keelan, Yin Xu and A. Paulina de la Mata

Fibre content can influence the intensity of odour that develops within clothing fabrics. However, little is known about how effective laundering is at removing malodours in…

Abstract

Purpose

Fibre content can influence the intensity of odour that develops within clothing fabrics. However, little is known about how effective laundering is at removing malodours in clothing which differ by fibre type. The purpose of this paper is to investigate whether a selected cotton fabric differed in odour intensity following multiple wear and wash cycles compared to a polyester fabric.

Design/methodology/approach

Eight (male and female) participants wore bisymmetrical cotton/polyester t-shirts during 20 exercise sessions over a ten-week trial period. Odour was evaluated via a sensory panel, bacterial populations were counted and selected odorous volatile organic compounds were measured with comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry detection. Analysis occurred both before and after the final (20th) wash cycle.

Findings

Findings showed that laundering was effective in reducing overall odour intensity (p0.001) and bacterial populations (p0.001) in both cotton and polyester fabrics. Odour was most intense on polyester fabrics following wear, not just before, but also after washing (p0.001); although, no differences in bacterial counts were found between fibre types (p>0.05). Chemical analysis found C4-C8 chained carboxylic acids on both types of unwashed fabrics, although they were more prevalent on polyester.

Originality/value

The findings suggest that the build-up of odour in polyester fabrics may be cumulative as important odorants such as the carboxylic acids were not as effectively removed from polyester compared to cotton.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 November 2019

Jia Xu, Jing Yu Zhang, Jiahan Xu, Yuqi Chang, Feilong Shi, Zhanzhu Zhang and Huanxia Zhang

One of the intensively developed in recent years new materials are hybrid textiles modified with carbon nanotubes (CNT). In this paper, CNTs was modified by grafting dimethyl…

Abstract

Purpose

One of the intensively developed in recent years new materials are hybrid textiles modified with carbon nanotubes (CNT). In this paper, CNTs was modified by grafting dimethyl phosphite and perfluorohexyl iodine. It was applied to the cotton to obtain the flame-retardant, water-repellent, ultraviolet-resistant and conductive multifunctional fabric.

Design/methodology/approach

The modified CNTs were loaded onto cotton fabric by impregnation and drying. The CNTs-multi was synthesized by grafted dimethyl phosphite and perfluorohexyl chain and applied to the cotton by dipping-drying method. The surface chemistry of functionalized CNTs was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The combustion properties were evaluated using a microscale combustion calorimeter, match test and TGA analysis. Surface hydrophilicity and hydrophobicity of fabric surface was characterized by static contact angle, and the UV resistance of the fabric was represented by the UPF value.

Findings

Dimethyl phosphite and perfluorohexyl chain were grafted on the surface of CNTs successively. The quantity of each component on the surface of CNTs was calculated according to XPS results. According to miniature combustion calorimeter data, both the value of maximum heat release rate (PHRR) and total heat release (THR) of CNTs -multi/cotton was about 65% lower than that of untreated cotton fabric. The residue after combustion of CNTs -multi/ cotton in the match test was more compact. The electrical conductivity of multi/ cotton is 225.6 kΩ/□, which is better than that of untreated cotton fabric. The UPF value of CNTs-multi/cotton reached 121, which was indicated that the anti-ultraviolet performance of CNTs-multi was greatly improved.

Research limitations/implications

Modifying method to increase the functional component amuount on the CNTs surface still need to be explored, which could increase the hydrophobicity. How to further improve the functional effect and the general synthetic steps will be of great significance to the preparation of multifunctional modified cotton fabric.

Practical implications

This modifying method can be used in any of multifunctional textile preparation process. The UV-resistant and flame retardant cotton fabric was revealed as a sample for use in outdoor sports such as clothes and tents.

Originality/value

To meet the needs of multifunctional cotton fabric, the modification of CNTs with dimethyl phosphite and perfluorohexyl iodine has not been reported. The modified fabric has flame-retardant, UV-resistant conductive and conductive properties.

Details

Pigment & Resin Technology, vol. 49 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 August 2019

Jia Xu, Jingyu Zhang, Jiahan Xu, Guangyuan Miao, Long Feng, Zhanzhu Zhang and Huanxia Zhang

Nanotechnology has been able to bind to a wide range of functional textiles in recently. This paper aims to modify graphene oxide (GO) by grafting dimethyl phosphite and…

Abstract

Purpose

Nanotechnology has been able to bind to a wide range of functional textiles in recently. This paper aims to modify graphene oxide (GO) by grafting dimethyl phosphite and perfluorohexyl iodine. It was applied to cotton to obtain a flame-retardant, water-repellent and ultraviolet-resistant multifunctional fabric.

Design/methodology/approach

The GO-multi was synthesized by grafted dimethyl phosphite and perfluorohexyl chain and applied to cotton by the dipping-drying method. The surface chemistry of functionalized GO was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The thermal stability of the fabric was characterized by thermogravimetric analysis (TGA). The combustion properties were evaluated using a microscale combustion calorimeter, match test and TGA. Hydrophobicity of film and fabric surface was characterized by static contact angle, and the UV resistance of the fabric was represented by the ultroviolet procetion factor (UPF) value.

Findings

Dimethyl phosphite and perfluorohexyl chains were grafted on the surface of GO successively. In the match test, the GO-multi/cotton kept the original outline of the fabric. According to the micro-scale combustion calorimetry (MCC) data, the value of PHRR and THR of GO-multi/cotton was about 45 per cent lower than that of untreated cotton fabric. It was found from the field-emission scanning electron microscopy (SEM) pictures that the residue of GO-multi/ cotton burned by the match method was more compact and the graphene lamellar structure remained more complete. The hydrophobic effect of GO-multi/cotton was improved compared to untreated cotton, but not better than the fabric treated by the perfluorohexyl chain-grafted GO. The UPF value of GO-multi/cotton reached 253, which indicated that the anti-ultraviolet performance of GO-multi was greatly improved after it was deposited on the cotton fabric.

Research limitations/implications

Although the hydrophobic effect was much higher than that of untreated cotton fabric, its hydrophobic effect was not satisfied, which may be due to the fact that the content of F element content was low. So, it is still needed to explore the modifying method to increase the functional component amount on the GO nanosheet.

Practical implications

This modifying method can be used in any of multifunctional textile preparation process. The hydrophobic and flame-retardant cotton fabric revealed a sample for use in outdoor sports such as clothes and tents.

Originality/value

To meet the needs of multifunctional cotton fabrics, the modification of GO with dimethyl phosphite and perfluorohexyl iodine has not been reported. The modified fabric has flame-retardant, UV-resistant and hydrophobic properties.

Details

Pigment & Resin Technology, vol. 48 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 June 2019

Xiansheng Zhang, Xianjing Du, Lili Wang and Meiwu Shi

The purpose of this paper is to investigate the effect of char on the flame retardancy of fabrics by a cone calorimeter, which is an important factor to compare the flame…

Abstract

Purpose

The purpose of this paper is to investigate the effect of char on the flame retardancy of fabrics by a cone calorimeter, which is an important factor to compare the flame retardancy of different fabrics.

Design/methodology/approach

Cone calorimeter measurements were carried out in a Fire Testing Technology (UK) apparatus at the heat fluxes of 50 and 75 kW/m2. Fabrics with one and three layers were employed, with the name of cotton1, cotton3, FR cotton1, FR cotton3, PMIA1 and PMIA3. The dimension of the fabric was 100×100 mm2. A cross-steel grid was used to prevent the fabrics from curling during burning. The distance between the bottom of the cone heater and the top of the sample was 25 mm.

Findings

This work was generously supported by National Key R&D Program of China (Project No. 2017YFB0309000), Natural Science Foundation of Shandong Province of China (Project No. ZR2019BEM026), Natural Science Foundation of China (Project No. 51803101) and China postdoctoral science foundation funded project (Project No. 2018M632619).

Originality/value

The present research provides insight into the effect of the char formation on the flame retardancy of the fabrics, and a method to comprehensively investigate the char influence in the flame retardancy of the fabrics by a cone calorimeter is proposed.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 January 2022

Bekinew Kitaw Dejene, Terefe Belachew Fenta and Chirato Godana Korra

The potential for burn injuries arises from contact with a hot surface, flame, hot liquid and steam hazards. The purpose of this study is to develop the flame retardant acrylic…

Abstract

Purpose

The potential for burn injuries arises from contact with a hot surface, flame, hot liquid and steam hazards. The purpose of this study is to develop the flame retardant acrylic and cotton blend textile finished with Enset Ventricosum pseudostem sap (EPS).

Design/methodology/approach

The two fabric was produced from (30% acrylic with 70% cotton) and (35% acrylic with 65% cotton) blend. The extracted sap was made alkaline and applied on two mordanted blend fabrics. The effect of blend ratio, the concentration of EPS and treatment time on flammability, Flame retardant properties of both the control and the treated fabrics were analyzed in terms of vertical flammability based on the design of the experiment software using central composite design. The air permeability and tensile strength of treated and controlled fabric were measured.

Findings

The blended fabrics at different blended ratios were flame retardant with an optimized result of burning time 2.902 min and 2.775 min and char length 6.442 cm and 7.332 cm in the warp and weft direction, respectively, at a concentration of 520 ml and time 33.588 min. There was a slight significant change in mechanical strengths and air permeability. The thermal degradation and the pyrolysis of the fabric samples were studied using thermogravimetric analysis and the chemical composition by Fourier-transform infrared spectroscopy abbreviated as Fourier-transform infrared spectroscopy. The wash durability of the treated fabric at different blend ratios was carried out for the optimized sample and the test result shows that the flame retardancy property is durable up to 15 washes.

Originality/value

Development of flame retardant cotton and acrylic blend textile fabric finish with ESP was studied; this work provides application of EPS for flame resistance which is optimized statically and successfully applied for a flame retardant property on cotton-acrylic blend fabric.

Details

Research Journal of Textile and Apparel, vol. 27 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of over 2000