Search results

1 – 10 of over 7000
Article
Publication date: 1 February 1999

Robert S. Brown

Selecting the most suitable, cost‐efficient alloy for a given application should not be difficult if the methodology described in this paper is followed. The first step is to…

Abstract

Selecting the most suitable, cost‐efficient alloy for a given application should not be difficult if the methodology described in this paper is followed. The first step is to identify those alloys with the desired corrosion resistance. Factors other than chemical composition have a bearing on an alloy’s corrosion resistance. Service environment and nature of the product application must also be considered. These conditions are discussed in the text. Consideration should be given to other key issues such as mechanical properties required as well as method of fabrication, design, condition and availability of the candidate alloy. To simplify selection, the author discusses severe corrodents and aggressive environments that are commonly encountered in the process industries, and describes the characteristics of alloys that might be considered for each type of corrosive service. Cross referenced charts position these alloys to show their relative resistance to each type of corrosion attack. While the paper is not designed to replace the technical expertise of a corrosion engineer, the author feels it can serve as a good starting point in the alloy selection process.

Details

Anti-Corrosion Methods and Materials, vol. 46 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 July 1978

J.B. Maylor

Introduction Although nickel is generally regarded as a corrosion resistant material its resistance to sea water is only moderate. In fast flowing sea water its corrosion rate is…

Abstract

Introduction Although nickel is generally regarded as a corrosion resistant material its resistance to sea water is only moderate. In fast flowing sea water its corrosion rate is very low; of the order of 0.0005 in/yr. Under stagnant conditions, however, it is susceptible to pitting and crevice corrosion attack. Consequently, alloying has been a common method of improving corrosion resistance to obtain a material having the excellent resistance of nickel to fast flowing sea water together with an improved resistance to pitting corrosion.

Details

Anti-Corrosion Methods and Materials, vol. 25 no. 7
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 5 June 2017

Aboozar Golgoon, Mahmood Aliofkhazraei, Mansoor Toorani, Mohammad Hossein Moradi, Alireza Sabour Rouhaghdam and Masoud Asgari

The low resistance against penetration of water, oxygen and the other corrosive ions through the paths of coating is one the most important problems. So, protective properties of…

Abstract

Purpose

The low resistance against penetration of water, oxygen and the other corrosive ions through the paths of coating is one the most important problems. So, protective properties of coating such as polyester must be promoted. Recently, the use of nanoparticles in the matrix of polymer coating to increase their protection and mechanical properties has been prospering greatly. The purpose of this study is to improve the corrosion resistance of the polyester powder coating with ZnO nanoparticles. The ZnO nanoparticles have been synthesized by hydrothermal method in a microwave. Using polyester – ZnO nanocomposite coating as powder – combining them by ball milling process and coating them by electrostatic process are innovative ideas and have not been used before it.

Design/methodology/approach

Polyester powder as the matrix and ZnO nanoparticles as reinforcing were combined in three different weight percentage (0.5, 1, 2 Wt.%), and they formed polymer nanocomposite by ball milling process. Then, the fabricated nanocomposite powder was applied to the surface of carbon steel using an electrostatic device, and then the coatings were cured in the furnace. The morphology of synthesized zinc oxide nanoparticles was investigated by transmission electron microscope. Also, the morphology of polyester powder and fabricated coatings was studied by scanning electron microscope. The effects of zinc oxide nanoparticles on the corrosion resistance of coated samples were studied by electrochemical impedance spectroscopy (EIS) test at various times (1-90 days) of immersion in 3.5 per cent NaCl electrolyte.

Findings

Scanning electron microscopy (SEM) results reveal that there are no obvious crack and defects in the nanocomposite coatings. In contrast, the pure polyester coatings having many cracks and pores in their structure. According to the EIS results, the corrosion resistance of nanocomposite coating compared to pure coating is higher. The value obtained from EIS test show that corrosion resistance for coating that contains 1 Wt.% nanoparticle was 32,150,000 (Ωcm2), which was six times bigger than that of pure coating. In addition to providing a barrier against diffusion of electrolyte, ZnO nanoparticles act as a corrosion inhibitor and, thus, increases the corrosion resistance. The corrosion resistance of coating containing 0.5 Wt.% nanoparticles was lower as compared to that of 1 Wt.% nanoparticles. The low content of nanoparticles caused partial covering of the porosity of coating which in turn leads to provide weaker barrier properties. The increase in quantity of nanoparticles from 1 to 2 Wt.% also caused a decrease in corrosion resistance which is attributed to the agglomeration of nanoparticles.

Originality/value

The results of this study indicated the significant effect of ZnO nanoparticles on the protective performance and corrosion resistance of the polyester powder coating. Evaluation of coating surface and interface with SEM technique revealed that nanocomposite coating compared with pure polyester coating provided a coating with lower number of pores and with higher quality. The EIS measurements represented that polymeric coating that contains nanoparticles compared to pure coating provides a better corrosion resistance. In addition to providing a barrier against diffusion of electrolyte, ZnO nanoparticles act as a corrosion inhibitor and thus increase the corrosion resistance. The corrosion resistance of coating containing 0.5 Wt.% nanoparticles was lower as compared to that containing 1Wt.% nanoparticles. The low content of nanoparticles caused partial covering of the porosity of coating which in turn leads to provide weaker barrier properties. The increase in quantity of nanoparticles from 1 to 2 Wt.% also caused a decrease in corrosion resistance which is attributed to the agglomeration of nanoparticles.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 August 2021

Bochun Xu, Nan Zou, Yunhao Jia, Chao Feng, Jiajia Bu, Yu Yan and Zhipeng Xing

The purpose of this paper is to study the effect of micro-nano surface texture on the corrosion resistance of a titanium alloy and investigate the correlation between corrosion

Abstract

Purpose

The purpose of this paper is to study the effect of micro-nano surface texture on the corrosion resistance of a titanium alloy and investigate the correlation between corrosion resistance and hydrophobicity.

Design/methodology/approach

The surface of the Ti6Al4V alloy was modified by laser processing and anodizing to fabricate micro-pits, nanotubes and micro-nano surface textures. Afterward, the surface morphology, hydrophobicity and polarization curve of the samples were analyzed by cold field scanning electron microscopy, contact angle measurement instruments and a multi-channel electrochemical workstation.

Findings

The micro-nano surface texture can enhance the hydrophobicity of the Ti6Al4V surface, which may lead to better drag reduction to ease the friction of implants in vivo. Nevertheless, no correlation existed between surface hydrophobicity and corrosion resistance; the corrosion resistance of samples with nanotubes and high-density samples with micro-nano surface texture was extremely enhanced, indicating the similar corrosion resistance of the two.

Research limitations/implications

The mechanism of micro-dimples on the corrosion resistance of the micro-nano surface texture was not studied.

Practical implications

The density of micro-pits needs to be optimized to guarantee excellent corrosion resistance in the design of the micro-nano surface texture; otherwise, it will not fulfill the requirement of surface modification.

Originality/value

The influence of the micro-nano surface texture on the corrosion resistance, as well as the relationship between hydrophobicity and corrosion resistance of the titanium alloy surface, were systematically investigated for the first time. These conclusions offer new knowledge.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 July 2019

Vipin Tandon, Awanikumar P. Patil and Ramesh C. Rathod

The purpose of this paper is to enhance the corrosion resistance of Cr-Mn austenitic stainless steel (ASS) via low temperature salt bath nitriding and to replace the convectional…

Abstract

Purpose

The purpose of this paper is to enhance the corrosion resistance of Cr-Mn austenitic stainless steel (ASS) via low temperature salt bath nitriding and to replace the convectional Cr-Ni ASS with newly developed enhanced corrosion resistive Cr-Mn ASS.

Design/methodology/approach

The low temperature salt bath nitriding was performed on Cr-Mn ASS at 450°C for 3 h in potassium nitrate salt bath.

Findings

The present paper compares the corrosion resistance of salt bath nitrided Cr-Mn ASS with convectional Cr-Ni ASSs (316 L and 304 L ASSs) in 3.5 per cent NaCl by electrochemical techniques. The electrochemical impedance spectroscopy result shows the increase in film resistance and potentiodynamic polarization results show the enhanced corrosion resistance of nitrided Cr-Mn ASS, which is almost equivalent to that of 316 L and 304 L ASSs. This is attributed to the formation of nitrogen supersaturated dense nitride layer. The present results therefore suggest that the nitrided Cr-Mn ASS may replace costly convectional Cr-Ni ASSs for commercial and industrial applications.

Originality/value

Ever-increasing price of nickel (Ni) is driving the industries to use Ni-free or low-Ni austenitic stainless steels (ASSs). But its corrosion resistance is relatively poor as compared to conventional Cr-Ni ASSs. However, its corrosion resistance can be improved by nitriding. The low temperature salt bath nitriding of Cr-Mn ASS and its electrochemical behavior in 3.5 per cent NaCl has not been studied. The present research paper is beneficial for industries to use low cost Cr-Mn, enhance its corrosion resistance and replace the use of costly conventional Cr-Ni ASSs.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 23 December 2021

Yue Zhang, Jun Xiao, Shaoguang Yang and Aimin Zhao

High silicon iron-based alloys possess excellent corrosion resistance in certain specific media, but the effects of electrolysis parameters on corrosion resistance remain unknown…

Abstract

Purpose

High silicon iron-based alloys possess excellent corrosion resistance in certain specific media, but the effects of electrolysis parameters on corrosion resistance remain unknown. This study aims to guide the development and application of an extra-low carbon high silicon iron-based alloy (ECHSIA) in electrode plates.

Design/methodology/approach

The corrosion resistance of ECHSIA and a conventional high-silicon cast iron (CHSCI) was analyzed through experimental characterizations. The morphology was observed by scanning electron microscopy. The influence of electrolysis parameters on the corrosion resistance of ECHSIA was investigated through corrosion experiments. The relationship between the electrolysis parameters and the corrosion resistance of ECHSIA was statistically investigated using the grey correlation analysis method.

Findings

The corrosion resistance of the ECHSIA is better than that of the CHSCI. The corrosion rate showed an increasing tendency with the increase in the nitric acid concentration (CHNO3), electrolyte temperature and current density. The grey correlation analysis results showed that the CHNO3 was the main factor affecting the corrosion rate of the ECHSIA.

Originality/value

An ECHSIA with a single ferrite microstructure was prepared. This study provides a guideline for the future development and application of ECHSIAs as electrode plates.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 January 2007

A.K. Mishra, R. Balasubramaniam and S. Tiwari

The research work in this paper aims to focus on understanding the corrosion inhibition of 6061‐8 (vol.%) SiC in 3.5 per cent NaCl solution using different concentrations (250…

1707

Abstract

Purpose

The research work in this paper aims to focus on understanding the corrosion inhibition of 6061‐8 (vol.%) SiC in 3.5 per cent NaCl solution using different concentrations (250, 500, 750 and 1,000 ppm) of cerium and lanthanum chloride.

Design/methodology/approach

The corrosion inhibition of 6061‐SiC in 3.5 per cent NaCl solution using the rare earth chloride inhibitors was analyzed by different electrochemical techniques. The techniques employed were linear polarization, Tafel extrapolation and electrochemical impedance spectroscopy (EIS). Further, surface characterization, before and after inhibitor addition, was studied using scanning electron microscopy (SEM) and energy dispersive analysis using X‐ray.

Findings

It was observed that the polarization resistance increased after addition of LaCl3 and CeCl3, with maximum increase noticed for 250 ppm LaCl3 and 1,000 ppm CeCl3. CeCl3 addition showed better improvement in polarization resistance value compared with LaCl3 addition. Pitting nucleation resistance also increased with addition of LaCl3 and CeCl3, with maximum obtained for 250 ppm LaCl3 and 500 ppm CeCl3. EIS studies showed that there was a significant increase in resistance of areas not covered by the surface film after addition of LaCl3 and CeCl3, when compared with the case without inhibitor, with a maximum increase observed with 1,000 ppm CeCl3. Rare earth chloride addition resulted in an increase in resistance on both cathodic intermetallic sites as well as the pitted regions by formation of precipitates of their oxide/hydroxide on those locations. This gave the high pitting nucleation resistance as well as improved corrosion resistance.

Research limitations/implications

It was observed that optimum concentrations of CeCl3 and LaCl3 resulted in good corrosion resistance properties on 6061‐SiC in 3.5 per cent NaCl solutions. Even small quantities of these inhibitors resulted in high corrosion resistance. However, it should be noted that both LaCl3 and CeCl3 did not follow a simple increase in corrosion resistance with composition, despite both being rare earth chloride inhibitors, and this issue merits further research.

Practical implications

Metal matrix composites (MMC) are of great use in the aerospace, military and automotive industries due to their good mechanical strength/density and stiffness/density ratios. A typical example might be the reinforcement of Al alloys with SiC particulates, which leads to a new generation of engineering materials. However, the addition of a reinforcing phase can cause discontinuities in any protective surface film, increasing the number of sites where corrosion can be initiated and rendering the composite liable to severe attack. Thus, this research work was performed to investigate if a suitable concentration of lanthanide salts (LaCl3 and CeCl3) could be identified that could improve both uniform and pitting corrosion resistance.

Originality/value

Earlier studies on the corrosion inhibition of 6061‐SiC used cerium conversion coatings. More recently (i.e. during the last 1‐2 years) work has started on lanthanum conversion coating on Al alloys. However, little work has been carried out on use of these lanthanide salts (CeCl3 and LaCl3) as corrosion inhibitors for 6061‐SiC. The present research work was performed in order to better understand the effectiveness of these inhibitors to reduce corrosion attack on 6061‐8(vol.%) SiC.

Details

Anti-Corrosion Methods and Materials, vol. 54 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 April 1997

Lydia M. Storojeva

Comparative investigations of the corrosion resistance of different coated sheet steels in various fuel mixtures were carried out. Corrosion resistance has been studied on the…

Abstract

Comparative investigations of the corrosion resistance of different coated sheet steels in various fuel mixtures were carried out. Corrosion resistance has been studied on the following materials: Neuratern (electrolytically deposited terne‐coated steel, Thyssen Stahl AG, Germany); Ternesheet (hot‐dip terne‐coated steel, Nippon Steel, Japan); hot‐dip terne‐coated steel (Dnepropetrovsk, Ukraine); Neuralyt (Zn‐Ni electrolytically deposited steel, Thyssen Stahl AG, Germany); fal‐D (hot‐dip aluminized steel, Thyssen Stahl AG, Germany); hot‐dip aluminized steel (Cherepovets), Russia); Galvalume (hot‐dip Zn‐55 per cent Al steel, Cherepovets, Russia). Investigations were carried out in the following environments: commercial petrol without special additives + water; commercial petrol, 10 per cent ethylated spirit + water; commercial petrol, 15 per cent methylated spirit + water. Corrosion resistance was evaluated in terms of ratings and weight loss. To compare the behaviour of the different types of samples and various fuel mixtures over the test period rating curves were plotted as a function of the test time.

Details

Anti-Corrosion Methods and Materials, vol. 44 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 January 2024

Qiang Sun, Quantong Jiang, Siwei Wu, Chang Liu, Heng Tang, L. Song, Hao Shi, Jizhou Duan and BaoRong Hou

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large…

Abstract

Purpose

The purpose of this paper is to explore the effect of ZnO on the structure and properties of micro-arc oxidation (MAO) coating on rare earth magnesium alloy under large concentration gradient.

Design/methodology/approach

The macroscopic and microscopic morphology, thickness, surface roughness, chemical composition and structure of the coating were characterized by different characterization methods. The corrosion resistance of the film was studied by electrochemical and scanning Kelvin probe force microscopy. The results show that the addition of ZnO can significantly improve the compactness and corrosion resistance of the MAO coating, but the high concentration of ZnO will cause microcracks, which will reduce the corrosion resistance to a certain extent.

Findings

When the concentration of zinc oxide is 8 g/L, the compactness and corrosion resistance of the coating are the best, and the thickness of the coating is positively correlated with the concentration of ZnO.

Research limitations/implications

Too high concentration of ZnO reduces the performance of MAO coating.

Practical implications

The MAO coating prepared by adding ZnO has good corrosion resistance. Combined with organic coatings, it can be applied in corrosive marine environments, such as ship parts and hulls. To a certain extent, it can reduce the economic loss caused by corrosion.

Originality/value

The effect of ZnO on the corrosion resistance of MAO coating in electrolyte solution was studied systematically, and the conclusion was new to the common knowledge.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 January 2019

Qianqian Zhang and Huichen Zhang

The purpose of this paper is to evaluate the effect of micro-nano mixed super-hydrophobic structure on corrosion resistance and mechanism of magnesium alloys.

Abstract

Purpose

The purpose of this paper is to evaluate the effect of micro-nano mixed super-hydrophobic structure on corrosion resistance and mechanism of magnesium alloys.

Design/methodology/approach

A super-hydrophobic surface was fabricated on AZ91 and WE43 magnesium alloys by laser etching and micro-arc oxidation (MAO) with SiO2 nanoparticles coating and low surface energy material modification. The corrosion resistance properties of the prepared super-hydrophobic surfaces were studied based on polarization curves and immersion tests.

Findings

Compared with bare substrates, the corrosion resistance of super-hydrophobic surfaces was improved significantly. The corrosion resistance of super-hydrophobic surface is related to micro-nano composite structure, static contact angle and pretreatment method. The more uniform the microstructure and the larger the static contact angle, the better the corrosion resistance of the super-hydrophobic surface. The corrosion resistance of super-hydrophobic by MAO is better than that of laser machining. Corrosion of super-hydrophobic surface can be divided into air valley action, physical shielding, pretreatment layer action and substrate corrosion.

Originality/value

The super-hydrophobic coatings can reduce the contact of matrix with water so that a super-hydrophobic coating would be an effective way for magnesium alloy anti-corrosion. Therefore, the corrosion resistance properties and mechanism of the prepared super-hydrophobic magnesium alloys were investigated in detail.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 7000