Search results

1 – 10 of over 5000
Article
Publication date: 7 August 2019

Zhengyu Huang, Lingyu Chen, Lianchao Zhang, Shixun Fan and Dapeng Fan

This paper aims to analyze the key factors influencing the synchronization performance of distributed motion control system and to improve the synchronization performance for…

Abstract

Purpose

This paper aims to analyze the key factors influencing the synchronization performance of distributed motion control system and to improve the synchronization performance for peripherals control of this system.

Design/methodology/approach

This paper deals with the software synchronization problems of distributed motion control system based on real-time Ethernet. First, combined with communication and control tasks, the key factors affecting synchronization performance of system are analyzed. Then, aiming at key factors and considering the synchronization of system bus, protocol conversion and task scheduling, a software synchronization method based on CANopen protocol and real-time Ethernet is proposed. Finally, the feasibility of this method is verified by establishing distributed motion control system and testing the synchronization performance of terminal control signals of slaves.

Findings

Based on this method, the results show that the synchronization accuracy for peripherals control of all slaves could be about 100 ns.

Practical implications

This research provides high-precision synchronization method, which could lay a foundation for the application of distributed motion control system in the field of assembly automation, such as multi-axis assembly robots control.

Originality/value

In distributed motion control system, many factors affect the synchronization performance. At present, there is no synchronization method that could comprehensively consider these factors. This paper not only analyzes the key factors influencing the synchronization performance of system but also proposes a synchronization method. Therefore, the method proposed in this paper has certain theoretical value and engineering significance.

Details

Assembly Automation, vol. 39 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 24 January 2020

Mourad Chelik and Rachid Beghdad

Many synchronization approaches are based on low-level time capturing, causing a tight integration with the Media Access Control (MAC) layer. Alternatively, this study aims to…

Abstract

Purpose

Many synchronization approaches are based on low-level time capturing, causing a tight integration with the Media Access Control (MAC) layer. Alternatively, this study aims to present a hybrid approach combining both receiver–receiver and sender–receiver schemes to reduce the variation of two-way message exchange durations, in heavy-load networks. To achieve network-wide synchronization, a variant of Prim’s algorithm (Cormen et al., 2009) is used to build a spanning tree, guaranteeing the minimum number of ancestors and limited error propagation. The simulation results show that the proposed approach is very competitive with a set of the most-cited synchronization protocols. In addition, a new synchronization simulator SynSim was developed using C++ language

Design/methodology/approach

To achieve network-wide synchronization, a variant of Prim's algorithm (Cormen et al., 2009) is used to build a spanning tree, guaranteeing the minimum number of ancestors and limited error propagation.

Findings

Simulation results show that the proposed approach is very competitive with a set of the most-cited synchronization protocols. In addition, a new synchronization simulator SynSim was developed using in C++ language.

Research limitations/implications

It can be concluded from the experiments that MDSP is suitable for WSNs especially if MAC layer timestamping is not possible. So, the mean delays synchronization protocol (MSDP) is suitable to achieve time synchronization in single-hop and multi-hop networks without the MAC layer timestamping in large wireless sensor network (WSN) deployments.

Practical implications

A future enhancement of MDSP could be switching between the traditional timestamping and the new proposed timestamping based on a given threshold, which is the number of nodes in the neighborhood and the load of the network. It will be also interesting to test it in a prototype. The proposed solution can be used in practice to implement the Time-division multiple access (TDMA) protocol in a WSN. In addition, the proposed simulator can be used in a computer network synchronization protocols course.

Originality/value

To the best of authors’ knowledge, this study’s contribution is original. In addition, the authors implemented a new synchronization simulator

Details

International Journal of Pervasive Computing and Communications, vol. 16 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 10 December 2020

Muhammad Haris, Muhammad Shafiq, Adyda Ibrahim and Masnita Misiran

The purpose of this paper is to develop some interesting results in the field of chaotic synchronization with a new finite-time controller to reduce the time of convergence.

Abstract

Purpose

The purpose of this paper is to develop some interesting results in the field of chaotic synchronization with a new finite-time controller to reduce the time of convergence.

Design/methodology/approach

This article proposes a finite-time controller for the synchronization of hyper(chaotic) systems in a given time. The chaotic systems are perturbed by the model uncertainties and external disturbances. The designed controller achieves finite-time synchronization convergence to the steady-state error without oscillation and elimination of the nonlinear terms from the closed-loop system. The finite-time synchronization convergence reduces the hacking duration and recovers the embedded message in chaotic signals within a given preassigned limited time. The free oscillation convergence keeps the energy consumption low and alleviates failure chances of the actuator. The proposed finite-time controller is a combination of linear and nonlinear parts. The linear part keeps the stability of the closed-loop, the nonlinear part increases the rate of convergence to the origin. A generalized form of analytical stability proof is derived for the synchronization of chaotic and hyper-chaotic systems. The simulation results provide the validation of the accomplish synchronization for the Lu chaotic and hyper-chaotic systems.

Findings

The designed controller not only reduces the time of convergence without oscillation of the trajectories which can run the system for a given time domain.

Originality/value

This work is originally written by the author.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 June 2016

Ping He and Tao Fan

– The purpose of this paper is with delay-independent stabilization of nonlinear systems with multiple time-delays and its application in chaos synchronization of Rössler system.

Abstract

Purpose

The purpose of this paper is with delay-independent stabilization of nonlinear systems with multiple time-delays and its application in chaos synchronization of Rössler system.

Design/methodology/approach

Based on linear matrix inequality and algebra Riccati matrix equation, the stabilization result is derived to guarantee asymptotically stable and applicated in chaos synchronization of Rössler chaotic system with multiple time-delays.

Findings

A controller is designed and added to the nonlinear system with multiple time-delays. The stability of the nonlinear system at its zero equilibrium point is guaranteed by applying the appropriate controller signal based on linear matrix inequality and algebra Riccati matrix equation scheme. Another effective controller is also designed for the global asymptotic synchronization on the Rössler system based on the structure of delay-independent stabilization of nonlinear systems with multiple time-delays. Numerical simulations are demonstrated to verify the effectiveness of the proposed controller scheme.

Originality/value

The introduced approach is interesting for delay-independent stabilization of nonlinear systems with multiple time-delays and its application in chaos synchronization of Rössler system.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 9 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 24 April 2007

R.S.H. Piggin

Ethernet continues to evolve as a viable fieldbus technology for industrial automation. This paper seeks to discuss the development of the Common Industrial Protocol (CIP) for…

2489

Abstract

Purpose

Ethernet continues to evolve as a viable fieldbus technology for industrial automation. This paper seeks to discuss the development of the Common Industrial Protocol (CIP) for Ethernet and standards with particular reference to time synchronisation, real time motion control and safety.

Design/methodology/approach

The CIP is introduced, with an overview of four network adaptations: CompoNet, DeviceNet, ControlNet, and EtherNet/IP. Developments in the EtherNet/IP implementation are discussed, along with key features. These include CIP Safety to meet the requirements for safety‐related control, CIP Sync for time synchronisation across CIP networks and CIP motion for real‐time closed loop motion control.

Findings

Standard, unmodified Ethernet will support time synchronisation, real time motion control and safety‐related applications with the CIP adaptation EtherNet/IP. The CIP enables complete integration of control with information, multiple CIP networks and internet technologies. CIP provides seamless communication from the plant floor throughout the enterprise, with a scalable and coherent architecture, incorporating functionality, such as safety, time synchronisation and motion control, hitherto only available with specialised or incompatible networks.

Practical implications

The implementations of CIP Sync, CIP Motion and CIP Safety and the corresponding standards provide functionality and flexibility not available from disparate specialist networks. The ability to fully integrate internet technologies and safety, synchronisation, motion and safety together is a distinguishing feature. Industrial Ethernet technologies vary in the ability to integrate to the same level of functionality and offer similar flexibility.

Originality/value

The development of CIP technology and the use of open standards are described. The opportunity to use the combination of an established automation protocol and standard, unmodified Ethernet provides potential cost benefits, flexibility, and innovative solutions, whilst providing integration, performance and cost advantages.

Details

Assembly Automation, vol. 27 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 5 May 2015

Dariusz Zieliński, Piotr Lipnicki and Wojciech Jarzyna

In the dispersed generation system, power electronic converters allow for coupling between energy sources and the power grid. The requirements of Transmission System Operators are…

Abstract

Purpose

In the dispersed generation system, power electronic converters allow for coupling between energy sources and the power grid. The requirements of Transmission System Operators are difficult to meet when the share of distributed energy sources of the total energy balance increases. These requirements allow to increase penetration of distributed generation sources without compromising power system stability and reliability. Therefore, in addition to control of active or reactive power, as well as voltage and frequency stabilization, the modern power electronic converters should support power grid in dynamic states or in the presence of nonlinear distortions. The paper aims to discuss these issues.

Design/methodology/approach

The research methodology used in this paper is based on three steps: Mathematical modelling and simulation studies, Experiments on laboratory test stand, Analyzing obtained results, evaluating them and formulating the conclusions.

Findings

The authors identified two algorithms, αβ-Filter and Voltage Controlled Oscillator, which are able to successfully cope with notch distortions. Other algorithms, used previously for voltage dips, operate improperly when the voltage grid has notching disturbances. This work evaluates six different synchronization algorithms with respect to the abilities to deal with notching.

Research limitations/implications

The paper presents results of the synchronization algorithms in the presence of nonlinear notching interference. These studies were performed using the original hardware-software power grid emulator, real-time d’Space platform and power electronic converter. This methodology allowed us to exactly and accurately evaluate synchronization performance methods in the presence of complex nonlinear phenomena in power grid and power electronic converter. The results demonstrated that the best algorithms were αβ – Filtering and Voltage Controlled Oscilator.

Originality/value

In this paper, different synchronization algorithms have been tested. These included the classical Phase Locked Loop with Synchronous Reference Frame as well as modified algorithms developed by the authors, which displayed high robustness with respect to the notching interference. During the tests, the previously developed original test rig was used, allowing software-hardware emulation of grid phenomena.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 February 2021

Abbas Tarhini, Puzant Balozain and F.Jordan Srour

This paper uses a cognitive analytics management approach to analyze, understand and solve the problems facing the implementation of information systems and help management do the…

493

Abstract

Purpose

This paper uses a cognitive analytics management approach to analyze, understand and solve the problems facing the implementation of information systems and help management do the needed changes to enhance such a critical process; the emergency management system in the health industry is analyzed as a case study.

Design/methodology/approach

Cognitive analytics management (CAM) framework (Osman and Anouz, 2014) is used. Cognitive process: The right questions are asked to understand the behavior of every process and the flow of its corresponding data; critical data variables were identified, guidelines for identifying data sources were set. Analytics process: Techniques of data analytics were applied to the selected data sets, problems were identified in user–system interaction and in the system design. The analysis process helped the management in the management process to make right decisions for the right change.

Findings

Using the CAM framework, the analysis to the Lebanese Red Cross case study identified system user-behavior problems and also system design problems. It identified cases where distributed subsystems are vulnerable to time keeping errors and helped the management make knowledgeable decisions to overcome major obstacles by implementing several changes related to hardware design, software implementation, human resource training, operational and human-technology changes. CAM is a novel and feasible software engineering approach for handling system failures.

Originality/value

The paper uses CAM framework as an approach to overcome system failures and help management do the needed changes to enhance such a critical process. This work contributes to the software engineering literature by introducing CAM as a new agile methodology to be used when dealing with system failures. Furthermore, this study is an action research that validated the CAM theoretical framework in a health emergency context in Lebanon.

Details

Journal of Enterprise Information Management, vol. 34 no. 2
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 21 April 2022

Zuanbo Zhou, Wenxin Yu, Junnian Wang, Yanming Zhao and Meiting Liu

With the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional…

Abstract

Purpose

With the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional fractional-order chaotic secure communication circuit with sliding mode synchronous based on microcontroller (MCU).

Design/methodology/approach

First, a five-dimensional fractional-order chaotic system for encryption is constructed. The approximate numerical solution of fractional-order chaotic system is calculated by Adomian decomposition method, and the phase diagram is obtained. Then, combined with the complexity and 0–1 test algorithm, the parameters of fractional-order chaotic system for encryption are selected. In addition, a sliding mode controller based on the new reaching law is constructed, and its stability is proved. The chaotic system can be synchronized in a short time by using sliding mode control synchronization.

Findings

The electronic circuit is implemented to verify the feasibility and effectiveness of the designed scheme.

Originality/value

It is feasible to realize fractional-order chaotic secure communication using MCU, and further reducing the synchronization error is the focus of future work.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Book part
Publication date: 11 December 2004

Stephen P. Jenkins and Lars Osberg

Abstract

Details

The Economics of Time Use
Type: Book
ISBN: 978-1-84950-838-4

Article
Publication date: 4 July 2018

Yanjun Lu, Li Xiong, Yongfang Zhang, Peijin Zhang, Cheng Liu, Sha Li and Jianxiong Kang

This paper aims to introduce a novel four-dimensional hyper-chaotic system with different hyper-chaotic attractors as certain parameters vary. The typical dynamical behaviors of…

Abstract

Purpose

This paper aims to introduce a novel four-dimensional hyper-chaotic system with different hyper-chaotic attractors as certain parameters vary. The typical dynamical behaviors of the new hyper-chaotic system are discussed in detail. The control problem of these hyper-chaotic attractors is also investigated analytically and numerically. Then, two novel electronic circuits of the proposed hyper-chaotic system with different parameters are presented and realized using physical components.

Design/methodology/approach

The adaptive control method is derived to achieve chaotic synchronization and anti-synchronization of the novel hyper-chaotic system with unknown parameters by making the synchronization and anti-synchronization error systems asymptotically stable at the origin based on Lyapunov stability theory. Then, two novel electronic circuits of the proposed hyper-chaotic system with different parameters are presented and realized using physical components. Multisim simulations and electronic circuit experiments are consistent with MATLAB simulation results and they verify the existence of these hyper-chaotic attractors.

Findings

Comparisons among MATLAB simulations, Multisim simulation results and physical experimental results show that they are consistent with each other and demonstrate that changing attractors of the hyper-chaotic system exist.

Originality/value

The goal of this paper is to construct a new four-dimensional hyper-chaotic system with different attractors as certain parameters vary. The adaptive synchronization and anti-synchronization laws of the novel hyper-chaotic system are established based on Lyapunov stability theory. The corresponding electronic circuits for the novel hyper-chaotic system with different attractors are also implemented to illustrate the accuracy and efficiency of chaotic circuit design.

Details

Circuit World, vol. 44 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of over 5000