Search results

1 – 10 of over 7000
Article
Publication date: 7 August 2019

Zhengyu Huang, Lingyu Chen, Lianchao Zhang, Shixun Fan and Dapeng Fan

This paper aims to analyze the key factors influencing the synchronization performance of distributed motion control system and to improve the synchronization performance for…

Abstract

Purpose

This paper aims to analyze the key factors influencing the synchronization performance of distributed motion control system and to improve the synchronization performance for peripherals control of this system.

Design/methodology/approach

This paper deals with the software synchronization problems of distributed motion control system based on real-time Ethernet. First, combined with communication and control tasks, the key factors affecting synchronization performance of system are analyzed. Then, aiming at key factors and considering the synchronization of system bus, protocol conversion and task scheduling, a software synchronization method based on CANopen protocol and real-time Ethernet is proposed. Finally, the feasibility of this method is verified by establishing distributed motion control system and testing the synchronization performance of terminal control signals of slaves.

Findings

Based on this method, the results show that the synchronization accuracy for peripherals control of all slaves could be about 100 ns.

Practical implications

This research provides high-precision synchronization method, which could lay a foundation for the application of distributed motion control system in the field of assembly automation, such as multi-axis assembly robots control.

Originality/value

In distributed motion control system, many factors affect the synchronization performance. At present, there is no synchronization method that could comprehensively consider these factors. This paper not only analyzes the key factors influencing the synchronization performance of system but also proposes a synchronization method. Therefore, the method proposed in this paper has certain theoretical value and engineering significance.

Details

Assembly Automation, vol. 39 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Content available
Article
Publication date: 1 September 1998

66

Abstract

Details

Assembly Automation, vol. 18 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 7 April 2015

Xi-Ning Li, Xiao-Gang Dang, Bao-Qiang Xie and Yu-Long Hu

– The purpose of this paper is to develop digital flexible pre-assembly tooling system for fuselage panels.

Abstract

Purpose

The purpose of this paper is to develop digital flexible pre-assembly tooling system for fuselage panels.

Design/methodology/approach

First, the paper analyzes the technological characteristics of fuselage panels and then determines the pre-assembly object. Second, the pre-assembly positioning method and assembly process are researched. Third, the panel components pre-assembly flexible tooling scheme is constructed. Finally, the pre-assembly flexible tooling system is designed and manufactured.

Findings

This study shows the novel solution results in significantly smaller tooling dimensions, while providing greater stability. Digital flexible assembly is an effective way to reduce floor space, reduce delivery and production lead times and improve quality.

Practical implications

The tooling designed in this case is actually used in industrial application. The flexible tooling can realize the pre-assembly for a number of fuselage panels, which is shown as an example in this paper.

Originality/value

The paper suggests the fuselage panel pre-assembly process based on the thought including pre-assembly, the automatic drilling and riveting and jointing, and constructs a flexible tooling system for aircraft fuselage panel component pre-assembly.

Details

Assembly Automation, vol. 35 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 13 March 2007

Daisuke Chugo, Kuniaki Kawabata, Hiroyuki Okamoto, Hayato Kaetsu, Hajime Asama, Norihisa Miyake and Kazuhiro Kosuge

The aim is to develop a force assistance system for standing‐up which prevents the decreasing of physical strength of the patient by using their remaining physical strength.

Abstract

Purpose

The aim is to develop a force assistance system for standing‐up which prevents the decreasing of physical strength of the patient by using their remaining physical strength.

Design/methodology/approach

The system realizes the standing up motion using the support bar with two degrees of freedom and the bed system which can move up and down. For using the remaining physical strength, our system uses the motion pattern which is based on the typical standing up motion by nursing specialist as control reference.

Findings

The assistance system realizes the natural standing up motion by nursing specialist and it is effective to assist the aged person to stand up without reducing their muscular strength.

Originality/value

The first idea is distributed system which controls the support bar and the bed system with coordination among them. The second idea is the combination of force and position control.

Details

Industrial Robot: An International Journal, vol. 34 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 July 2006

Nkgatho Sylvester Tlale

In this paper, two omni‐directional mobile vehicles are designed and controlled implementing distributed mechatronics controllers. Omni‐directionality is the ability of mobile…

1538

Abstract

Purpose

In this paper, two omni‐directional mobile vehicles are designed and controlled implementing distributed mechatronics controllers. Omni‐directionality is the ability of mobile vehicle to move instantaneously in any direction. It is achieved by implementing Mecanum wheels in one vehicle and conventional wheels in another vehicle. The control requirements for omni‐directionality using the two above‐mentioned methods are that each wheel must be independently driven, and that all the four wheels must be synchronized in order to achieve the desired motion of each vehicle.

Design/methodology/approach

Distributed mechatronics controllers implementing Controller Area Network (CAN) modules are used to satisfy the control requirements of the vehicles. In distributed control architectures, failures in other parts of the control system can be compensated by other parts of the system. Three‐layered control architecture is implemented for; time‐critical tasks, event‐based tasks, and task planning. Global variables and broadcast communication is used on CAN bus. Messages are accepted in individual distributed controller modules by subscription.

Findings

Increase in the number of distributed modules increases the number of CAN bus messages required to achieve smooth working of the vehicles. This requires development of higher layer to manage the messages on the CAN bus.

Research limitations/implications

The limitation of the research is that analysis of the distributed controllers that were developed is complex, and that there are no universally accepted tool for conducting the analysis. The other limitation is that teh mathematical models of the mobile robot that have been developed need to be verified.

Practical implications

In the design of omni‐directional vehicles, reliability of the vehicle can be improved by modular design of mechanical system and electronic system of the wheel modules and the sensor modules.

Originality/value

The paper tries to show the advantages of distributed controller for omni‐directional vehicles. To the author's knowledge, that is a new concept.

Details

Industrial Robot: An International Journal, vol. 33 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 April 2007

R.S.H. Piggin

Ethernet continues to evolve as a viable fieldbus technology for industrial automation. This paper seeks to discuss the development of the Common Industrial Protocol (CIP) for…

2488

Abstract

Purpose

Ethernet continues to evolve as a viable fieldbus technology for industrial automation. This paper seeks to discuss the development of the Common Industrial Protocol (CIP) for Ethernet and standards with particular reference to time synchronisation, real time motion control and safety.

Design/methodology/approach

The CIP is introduced, with an overview of four network adaptations: CompoNet, DeviceNet, ControlNet, and EtherNet/IP. Developments in the EtherNet/IP implementation are discussed, along with key features. These include CIP Safety to meet the requirements for safety‐related control, CIP Sync for time synchronisation across CIP networks and CIP motion for real‐time closed loop motion control.

Findings

Standard, unmodified Ethernet will support time synchronisation, real time motion control and safety‐related applications with the CIP adaptation EtherNet/IP. The CIP enables complete integration of control with information, multiple CIP networks and internet technologies. CIP provides seamless communication from the plant floor throughout the enterprise, with a scalable and coherent architecture, incorporating functionality, such as safety, time synchronisation and motion control, hitherto only available with specialised or incompatible networks.

Practical implications

The implementations of CIP Sync, CIP Motion and CIP Safety and the corresponding standards provide functionality and flexibility not available from disparate specialist networks. The ability to fully integrate internet technologies and safety, synchronisation, motion and safety together is a distinguishing feature. Industrial Ethernet technologies vary in the ability to integrate to the same level of functionality and offer similar flexibility.

Originality/value

The development of CIP technology and the use of open standards are described. The opportunity to use the combination of an established automation protocol and standard, unmodified Ethernet provides potential cost benefits, flexibility, and innovative solutions, whilst providing integration, performance and cost advantages.

Details

Assembly Automation, vol. 27 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 21 August 2009

Ming Xie, Lei Wang, Xian Linbo, Jing Li, Hejin Yang, Chengsen Song and Li Zhang

Autonomous mobile manipulation depends on a lot of effort at various levels. In general, the hardware design is as important as algorithm (or software) design. In particular, the…

Abstract

Purpose

Autonomous mobile manipulation depends on a lot of effort at various levels. In general, the hardware design is as important as algorithm (or software) design. In particular, the absence of certain capabilities of hardware can seriously affect the feasibility and performance of algorithms. The purpose of this paper is to present work on developing hardware capability for mobile manipulation by low‐cost humanoids (LOCH) humanoid robot.

Design/methodology/approach

This paper presents research work on developing the hardware support which enables vision‐guided mobile manipulation realized on top of a biped humanoid robot called LOCH. One important goal which guides the development is to achieve the hardware capability with human‐like dexterity, modularity, functionality, and appearance.

Findings

This paper discusses the detail of solutions leading to the realization of the intended hardware capability, focusing in particular on the issues related to mechanism, actuation, distributed sensing, and distributed control of humanoid head, humanoid hands and humanoid arms. Finally, the paper shows the result of the actual prototype, which can be controlled by a remote control station through wireless connection.

Research limitations/implications

In designing a machine, it is common to do motor‐sizing and material selection. Since these are standard procedures, these details are omitted because readers with the training in mechanical engineering should be able to work out such details in order to select the appropriate motors and materials. Also, this paper does not delve into the description of the biped system of LOCH humanoid, because such work requires another long paper in order to reveal major details.

Originality/value

This paper presents the major detail of research efforts toward developing hardware capabilities for achieving autonomous mobile manipulation by LOCH humanoid robot, focusing on three important modules, namely: perception head, human‐like hands, and arms. The uniqueness of this work is twofold. First, LOCH humanoid robot's perception head has the most versatile sensing capabilities, which are fully integrated into a compact and human‐like head. Second, each of LOCH humanoid robot's hands has 14 degrees of freedom, which are realized within a mechanism which is of human‐hand size and shape. In addition, the perception head, humanoid hands and humanoid arms are seamlessly integrated together owing to the adoption of a distributed system which supports networked sensing and control through the use of both control area network bus and transmission control protocol/internet protocol internet.

Details

Industrial Robot: An International Journal, vol. 36 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 March 2019

Yanchao Sun, Liangliang Chen and Hongde Qin

This paper aims to investigate the distributed coordinated fuzzy tracking problems for multiple mechanical systems with nonlinear model uncertainties under a directed…

Abstract

Purpose

This paper aims to investigate the distributed coordinated fuzzy tracking problems for multiple mechanical systems with nonlinear model uncertainties under a directed communication topology.

Design/methodology/approach

The dynamic leader case is considered while only a subset of the follower mechanical systems can obtain the leader information. First, this paper approximates the system uncertainties with finite fuzzy rules and proposes a distributed adaptive tracking control scheme. Then, this paper makes a detailed classification of the system uncertainties and uses different fuzzy systems to approximate different kinds of uncertainties. Further, an improved distributed tracking strategy is proposed. Closed-loop systems are investigated using graph theory and Lyapunov theory. Numerical simulations are performed to verify the effectiveness of the proposed methods.

Findings

Based on fuzzy control and adaptive control theories, the desired distributed coordinated tracking control strategies for multiple uncertain mechanical systems are developed.

Originality/value

Compared with most existing literature, the proposed distributed tracking algorithms use fuzzy control and adaptive control techniques to cope with system nonlinear uncertainties of multiple mechanical systems. Moreover, the improved control strategy not only reduces fuzzy rules but also has higher control accuracy.

Details

Assembly Automation, vol. 39 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 23 June 2021

Jiehao Li, Shoukun Wang, Junzheng Wang, Jing Li, Jiangbo Zhao and Liling Ma

When it comes to the high accuracy autonomous motion of the mobile robot, it is challenging to effectively control the robot to follow the desired trajectory and transport the…

Abstract

Purpose

When it comes to the high accuracy autonomous motion of the mobile robot, it is challenging to effectively control the robot to follow the desired trajectory and transport the payload simultaneously, especially for the cloud robot system. In this paper, a flexible trajectory tracking control scheme is developed via iterative learning control to manage a distributed cloud robot (BIT-6NAZA) under the payload delivery scenarios.

Design/methodology/approach

Considering the relationship of six-wheeled independent steering in the BIT-6NAZA robot, an iterative learning controller is implemented for reliable trajectory tracking with the payload transportation. Meanwhile, the stability analysis of the system ensures the effective convergence of the algorithm.

Findings

Finally, to evaluate the developed method, some demonstrations, including the different motion models and tracking control, are presented both in simulation and experiment. It can achieve flexible tracking performance of the designed composite algorithm.

Originality/value

This paper provides a feasible method for the trajectory tracking control in the cloud robot system and simultaneously promotes the robot application in practical engineering.

Details

Assembly Automation, vol. 41 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 12 January 2010

Chuntao Leng, Qixin Cao and Charles Lo

The purpose of this paper is to propose a suitable motion control method for omni‐directional mobile robots (OMRs) based on anisotropy.

Abstract

Purpose

The purpose of this paper is to propose a suitable motion control method for omni‐directional mobile robots (OMRs) based on anisotropy.

Design/methodology/approach

A dynamic modeling method for OMRs based on the theory of vehicle dynamics is proposed. By analyzing the driving torque acting on each axis while the robot moves in different directions, the dynamic anisotropy of OMRs is analyzed. The characteristics of dynamic anisotropies and kinematic anisotropies are introduced into the fuzzy sliding mode control (FSMC) system to coordinate the driving torque as a factor of influence.

Findings

A combination of the anisotropy and FSMC method produces coordinated motion for the multi‐axis system of OMRs, especially in the initial process of motion. The proposed control system is insensitive to parametric vibrations and external disturbances, and the chattering is apparently decreased. Simulations and experiments have proven that an effective motion tracking can be achieved by using the proposed motion control method.

Research limitations/implications

In order to obtain a clearer analysis of the anisotropy influence during the acceleration process, only the case of translation motion is discussed here. Future work could be done on cases where there are both translation and rotation motions.

Practical implications

The proposed motion control method is applied successfully to achieve effective motion control for OMRs, which is suitable for any kind of OMR.

Originality/value

The novel concept of dynamic anisotropy of OMRs is proposed. By introducing the anisotropy as an influential factor into the FSMC system, a new motion control method suitable for OMRs is proposed.

Details

Industrial Robot: An International Journal, vol. 37 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 7000