Search results

1 – 10 of over 29000
Article
Publication date: 6 March 2017

Shyang-Jye Chang and Ray-Hong Wang

The motion vector estimation algorithm is very widely used in many image process applications, such as the image stabilization and object tracking algorithms. The…

Abstract

Purpose

The motion vector estimation algorithm is very widely used in many image process applications, such as the image stabilization and object tracking algorithms. The conventional searching algorithm, based on the block matching manipulation, is used to estimate the motion vectors in conventional image processing algorithms. During the block matching manipulation, the violent motion will result in greater amount of computation. However, too large amount of calculation will reduce the effectiveness of the motion vector estimation algorithm. This paper aims to present a novel searching method to estimate the motion vectors effectively.

Design/methodology/approach

This paper presents a novel searching method to estimate the motion vectors for high-resolution image sequences. The searching strategy of this algorithm includes three steps: the larger area searching, the adaptive directional searching and the small area searching.

Findings

The achievement of this paper is to develop a motion vector searching strategy to improve the computation efficiency. Compared with the conventional motion vector searching algorithms, the novel motion vector searching algorithm can reduce the motion matching manipulation effectively by 50 per cent.

Originality/value

This paper presents a novel searching strategy to estimate the motion vectors effectively. From the experimental results, the novel motion vector searching algorithm can reduce the motion matching manipulation effectively, compared with the conventional motion vector searching algorithms.

Details

Engineering Computations, vol. 34 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 October 2009

Kanstantsin Miatliuk, Yoon Hyuk Kim and Kyungsoo Kim

The purpose of this paper is to define the process of human motion design in hierarchical space by cybernetic technology using mathematical symbol construction of…

Abstract

Purpose

The purpose of this paper is to define the process of human motion design in hierarchical space by cybernetic technology using mathematical symbol construction of hierarchical systems (HSs) and realize the technology in tasks of biomechanical motion design.

Design/methodology/approach

Suggested HS technology allows definition of human motion on level space. HS are presented by their two main symbol images, i.e. mathematical symbol construction and graphic image. Those images connect all the strata of HS, show the acts of systems multiplying (learning) and uniting (design), the place of man in hierarchical space and human activity on higher levels. The design&control tasks are solved by HS coordinator.

Findings

The paper proves that HS technology presented allows design&control tasks of human motion in hierarchical space to be solved. Coherence of man's construction deformations and correspondent changes of his interactions with environment elements (his motion) is controlled by HS coordinator. Coordinator design tasks are formulated. The possibility of computer program description in frames of the proposed technology is revealed.

Practical implications

The technology presented gives an instrument for the design&control of different kinds of human motion in hierarchical space, predicts connected motion dynamics on different levels. It is applied in design tasks of biomechanical motion.

Originality/value

The method (technology) presented meets all the requirements of practical cybernetic (design&control) tasks. It brings new light to theory and practice of human motion design, presents human motion as hierarchical process in the level space, allows motion design&control task to be solved as coordination task of HS coordinator.

Details

Kybernetes, vol. 38 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

Book part
Publication date: 23 November 2016

James Jianxin Gong and S. Mark Young

We examine the role of financial and nonfinancial performance measures in managing revenues derived from life cycles of a type of intellectual property products − motion pictures.

Abstract

Purpose

We examine the role of financial and nonfinancial performance measures in managing revenues derived from life cycles of a type of intellectual property products − motion pictures.

Design/approach

Our study focuses on the first two markets in which audiences can watch a motion picture – the upstream theatrical market and the downstream home video market. We combine data collected from numerous public and proprietary sources and form a final sample of 654 motion pictures. Then we perform regression analysis on the data.

Findings

First, three measures of a movie’s performance in the theatrical market, opening box office revenue, peak rank, and weeks at the peak rank, have positive effects on subsequent revenues in the home video market. Second, the same set of performance measures also predicts the motion picture’s life span in the theatrical market. Third, when the actual life span of a motion picture in the theatrical market deviates from its predicted value, the total return on investment in the motion picture decreases.

Research limitations

We do not have data on other downstream markets related to motion pictures, such as pay-per-view and online video streaming.

Practical implications

This study suggests that the public and proprietary data can be used to inform managerial decisions regarding intellectual property product life cycles.

Originality/value

This is the first accounting study that directly examines life cycle revenues of intellectual property products. We also extend literature on revenue driver and revenue management research to the product level.

Article
Publication date: 27 April 2022

Qixin Zhu, Yusheng Jin and Yonghong Zhu

The purpose of this paper is to propose a new acceleration/deceleration (acc/dec) algorithm for motion profiles. The motion efficiency, flexibility of the motion profiles…

Abstract

Purpose

The purpose of this paper is to propose a new acceleration/deceleration (acc/dec) algorithm for motion profiles. The motion efficiency, flexibility of the motion profiles and the residual vibration of the movement are discussed in this paper.

Design/methodology/approach

A dynamics model is developed to assess the residual vibration of these two kinds of motion profile. And a Simulink model is created to assess the motion efficiency and flexibility of the motion profiles with the proposed acc/dec algorithm.

Findings

Considering the flexibility of trigonometric motion profiles and the higher motion efficiency of S-curve motion profiles, the authors add the polynomial parts into the jerk profile of the cosine function acc/dec algorithm to hold the jerk when it reaches the maximum so that the motion efficiency can increase and decrease residual vibration at the same time. And the cyclical parameter k shows the decisive factor for the flexibility of trigonometric motion profiles.

Originality/value

Comparing with the traditional motion profiles, the proposed motion profiles have higher motion efficiency and excite less residual vibration. The acc/dec algorithm proposed in this paper is useful for the present motion control and servo system.

Details

Assembly Automation, vol. 42 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 2 May 2022

Yongliang Zhang, Jibei Ma, Xingchong Chen and Yun Wang

Under different ground motion excitation modes, the spatial coupling effect of seismic response for the arch bridge with thrust, seismic weak parts and the internal force…

Abstract

Purpose

Under different ground motion excitation modes, the spatial coupling effect of seismic response for the arch bridge with thrust, seismic weak parts and the internal force components of the control section of main arch ribs are analyzed.

Design/methodology/approach

Taking a 490 m deck type railway steel truss arch bridge as the background, the dynamic calculation model of the whole bridge was established by SAP2000 software. The seismic response analyses under one-, two- and three-dimension (1D, 2D and 3D) uniform ground motion excitations were carried out.

Findings

For the steel truss arch bridge composed of multiple arch ribs, any single direction ground motion excitation will cause large axial force in the chord of arch rib. The axial force caused by transverse and vertical ground motion excitation in the chord of arch crown area is 1.4–3.6 times of the corresponding axial force under longitudinal seismic excitation. The in-plane bending moment caused by the lower chord at the vault is 4.2–5.5 times of the corresponding bending moment under the longitudinal seismic excitation. For the bottom chord of arch rib, the arch foot is the weak part of earthquake resistance, but for the upper chord of arch rib, the arch foot, arch crown and the intersection of column and upper chord can all be the potential earthquake-resistant weak parts. The normal stress of the bottom chord of the arch rib under multidimensional excitation is mainly caused by the axial force, but the normal stress of the upper chord of the arch rib is caused by the axial force, in-plane and out of plane bending moment.

Originality/value

The research provides specific suggestions for ground motion excitation mode and also provides reference information for the earthquake-resistant weak part and seismic design of long-span deck type railway steel truss arch bridges.

Article
Publication date: 7 December 2022

Shuang Hao, Guangming Song, Juzheng Mao, Yue Gu and Aiguo Song

This paper aims to present a fully actuated aerial manipulator (AM) with a robust motion/force hybrid controller for conducting contact-typed inspection tasks in industrial plants.

Abstract

Purpose

This paper aims to present a fully actuated aerial manipulator (AM) with a robust motion/force hybrid controller for conducting contact-typed inspection tasks in industrial plants.

Design/methodology/approach

An AM is designed based on a hexarotor with tilted rotors and a rigidly attached end effector. By tilting the rotors, the position and attitude of the AM can be controlled independently, and the AM can actively exert forces on industrial facilities through the rigidly attached end effector. A motion/force hybrid controller is proposed to perform contact-typed inspection tasks. The contact-typed inspection task is divided into the approach phase and the contact phase. In the approach phase, the AM automatically approaches the contact surface. In the contact phase, a motion/force hybrid controller is used for contact-typed inspection. Finally, a disturbance observer (DOB) is used to estimate external disturbances and used as feedforward compensation.

Findings

The proposed AM can slowly approach the contact surface without significant impact in the contact phase. It can realize constant force control in the direction normal to the contact surface in the contact phase, whereas the motion of the remaining directions can be controlled by the operator. The use of the DOB ensures the robustness of the AM in the presence of external wind disturbances.

Originality/value

A fully actuated AM system with a robust motion/force hybrid controller is proposed. The effectiveness of the proposed AM system for conducting contact-typed industrial inspection tasks is validated by practical experiments.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 May 2021

Zhe Wang, Xisheng Li, Xiaojuan Zhang, Yanru Bai and Chengcai Zheng

How to model blind image deblurring that arises when a camera undergoes ego-motion while observing a static and close scene. In particular, this paper aims to detail how…

Abstract

Purpose

How to model blind image deblurring that arises when a camera undergoes ego-motion while observing a static and close scene. In particular, this paper aims to detail how the blurry image can be restored under a sequence of the linear model of the point spread function (PSF) that are derived from the 6-degree of freedom (DOF) camera’s accurate path during the long exposure time.

Design/methodology/approach

There are two existing techniques, namely, an estimation of the PSF and a blind image deconvolution. Based on online and short-period inertial measurement unit (IMU) self-calibration, this motion path has discretized a sequence of the uniform speed of 3-DOF rectilinear motion, which unites with a 3-DOF rotational motion to form a discrete 6-DOF camera’s path. These PSFs are evaluated through the discrete path, then combine with a blurry image to restoration through deconvolution.

Findings

This paper describes to build a hardware attachment, which is composed of a consumer camera, an inexpensive IMU and a 3-DOF motion mechanism to the best of the knowledge, together with experimental results demonstrating its overall effectiveness.

Originality/value

First, the paper proposes that a high-precision 6-DOF motion platform periodically adjusts the speed of a three-axis rotational motion and a three-axis rectilinear motion in a short time to compensate the bias of the gyroscope and the accelerometer. Second, this paper establishes a model of 6-DOF motion and emphasizes on rotational motion, translational motion and scene depth motion. Third, this paper addresses a novel model of the discrete path that the motion during long exposure time is discretized at a uniform speed, then to estimate a sequence of PSFs.

Details

Sensor Review, vol. 41 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 January 2006

Miran Saje and Dejan Zupan

The motion of a disk spinning on a horizontal surface has drawn a great deal of interest recently. The objectives of the researches are to find out what produces an…

Abstract

The motion of a disk spinning on a horizontal surface has drawn a great deal of interest recently. The objectives of the researches are to find out what produces an increasing rattling sound and why the spinning ends so abruptly. In order to understand the behaviour of the spinning disk better, we derived a mathematical model of the rolling/sliding motion of a thin, rigid disk on a rigid, rough horizontal plane, and found the numerical solution of the related initial value problem. Then we studied the motion of the commercially available Tangent Toy disk [3]. The results show that the normal contact force becomes very large whenever the inclination of the disk becomes small. As the inclination of the disk oscillates with time, the time‐graph of the normal contact force exhibits periodical peaks, which correlate well with the peaks in the recorded sound response. They could well be responsible for the rattling sound heard during the motion.

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 July 1958

MUCH has been written about industrial engineering, especially in regard to American practice, but a good deal of confusion still exists about the whole subject.

Abstract

MUCH has been written about industrial engineering, especially in regard to American practice, but a good deal of confusion still exists about the whole subject.

Details

Work Study, vol. 7 no. 7
Type: Research Article
ISSN: 0043-8022

Open Access
Article
Publication date: 18 January 2021

Hongxing Wang, LianZheng Ge, Ruifeng Li, Yunfeng Gao and Chuqing Cao

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current…

Abstract

Purpose

An optimal solution method based on 2-norm is proposed in this study to solve the inverse kinematics multiple-solution problem caused by a high redundancy. The current research also presents a motion optimization based on the 2-Norm of high-redundant mobile humanoid robots, in which a kinematic model is designed through the entire modeling.

Design/methodology/approach

The current study designs a highly redundant humanoid mobile robot with a differential mobile platform. The high-redundancy mobile humanoid robot consists of three modular parts (differential driving platform with two degrees of freedom (DOF), namely, left and right arms with seven DOF, respectively) and has total of 14 DOFs. Given the high redundancy of humanoid mobile robot, a kinematic model is designed through the entire modeling and an optimal solution extraction method based on 2-norm is proposed to solve the inverse kinematics multiple solutions problem. That is, the 2-norm of the angle difference before and after rotation is used as the shortest stroke index to select the optimal solution. The optimal solution of the inverse kinematics equation in the step is obtained by solving the minimum value of the objective function of a step. Through the step-by-step cycle in the entire tracking process, the kinematic optimization of the highly redundant humanoid robot in the entire tracking process is realized.

Findings

Compared with the before and after motion optimizations based on the 2-norm algorithm of the robot, its motion after optimization shows minimal fluctuation, improved smoothness, limited energy consumption and short path during the entire mobile tracking and operating process.

Research limitations/implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Practical implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Social implications

In this paper, the whole kinematics model of the highly redundant humanoid mobile robot is established and its motion is optimized based on 2-norm, which provides a theoretical basis for the follow-up research of the service robot.

Originality/value

Motion optimization based on the 2-norm of a highly redundant humanoid mobile robot with the entire modeling is performed on the basis of the entire modeling. This motion optimization can make the highly redundant humanoid mobile robot’s motion path considerably short, minimize energy loss and shorten time. These researches provide a theoretical basis for the follow-up research of the service robot, including tracking and operating target, etc. Finally, the motion optimization algorithm is verified by the tracking and operating behaviors of the robot and an example.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 29000