Search results

1 – 10 of 338
Article
Publication date: 1 April 1992

C. DALLE, M.R. FRISCOURT and P.A. ROLLAND

Time and frequency domain complementary numerical models of microwave non‐linear circuits using two‐terminal active semiconductor devices are presented. Their main feature is the…

Abstract

Time and frequency domain complementary numerical models of microwave non‐linear circuits using two‐terminal active semiconductor devices are presented. Their main feature is the use of numerical one‐dimensional macroscopic physical models as semiconductor device models. Their respective capability is illustrated by some results of a study devoted to the optimization of millimeter‐wave avalanche diode frequency multipliers.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 11 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 February 1989

Drive east from Frankfurt, upstream along the valley of the River Main, and in 25 kilometres or so you will reach Hanau, where once the brothers Grimm lived and collected the…

Abstract

Drive east from Frankfurt, upstream along the valley of the River Main, and in 25 kilometres or so you will reach Hanau, where once the brothers Grimm lived and collected the folklore which we now know as the famous Tales. Here too, in 1856, Wilhelm Carl Heraeus, a chemist and pharmacist, proprietor of the pharmacy which had carried the family name for many generations, succeeded in producing temperatures approaching 2000°C from an oxy‐hydrogen flame, temperatures sufficiently high to achieve the melting point of platinum and to allow him to melt substantial quantities of this metal for the first time. Hanau was then a centre for the jewellery manufacturing industry (and remains so today) so the smelting of platinum and other precious metals had an immediate commercial relevance.

Details

Microelectronics International, vol. 6 no. 2
Type: Research Article
ISSN: 1356-5362

Article
Publication date: 6 December 2022

Pallav Rawal and Sanyog Rawat

In wireless communication system, use of multiple antennas for different requirements of system will increase the system complexity. However, reconfigurable antenna is maximizing…

Abstract

Purpose

In wireless communication system, use of multiple antennas for different requirements of system will increase the system complexity. However, reconfigurable antenna is maximizing the connectivity to cover different wireless services that operate different frequency range. Pattern reconfigurable antenna can improve security, avoid noise and save energy. Due to their compactness and better performance at different applications, reconfigurable antennas are very popular among the researchers. The purpose of this work, is to propose a novel design of S-shaped antenna with frequency and pattern diversity. The pattern and frequency reconfiguration are controlled via ON/OFF states of the PIN diode.

Design/methodology/approach

The geometrical structure of the proposed antenna dimension is 18 × 18 × 0.787 mm3 with εr = 2.2 dielectric constant. Three S-shaped patches are connected to a ring patch through PIN diodes. The approximate circumference of ring patch is 18.84 mm and length of patch is 5 mm, so approximate length of radiating patch is 14.42 mm and effective dielectric constant is 1.93. Conductor backed coplanar waveguide (CPW) is used for feeding. The proposed antenna is designed and simulated on CST microwave studio and fabricated using photolithography process. Measurements have been done in anechoic chamber.

Findings

Antenna shows the dual band operation at 2.1 and 3.4 GHz frequency. The first band remains constant at 2.1 GHz resonant frequency and 200–400 MHz impedance bandwidth. Second band is switched at seven different resonant frequencies as 3.14, 3.45, 3.46, 3.68, 3.69, 3.83 and 3.86 GHz with switching of the diodes. The −10 dB bandwidth is more than 1.4 GHz.

Research limitations/implications

Pattern reconfigurability can be achieved using mechanical movement of antenna easily but it is not a reliable approach for planar antennas. Electronic switching method is used in proposed antenna. Antenna size is very small so fabrication is very crucial task. Measured results are deviated from simulation results due to fabrication error and effect of leads of diodes, connecting wires and battery.

Practical implications

The reconfiguration of the proposed antenna is controlled via ON/OFF states of the three PIN diodes. The lower band of 2.1 GHz is fixed, while second band is switched at five different resonant frequencies as 3.27, 3.41, 3.45, 3.55 and 3.88 GHz, with switching of the PIN diodes with all state of diodes and exhibit pattern reconfigurability at 2.1 GHz frequency. At second band center frequency is significantly changed with state of diodes and at 3.4 GHz pattern is also changed with state of diodes, hence antenna exhibits frequency and pattern reconfigurability.

Originality/value

A novel design of pattern and frequency reconfigurable antenna is proposed. Here, work is divided into two parts: first is frequency reconfiguration and second is radiation pattern reconfiguration. PIN diodes as switch are used to select the frequency band and reconfigure the radiation pattern. This proposed antenna design is novel dual band frequency and pattern reconfigurable antenna. It resonates at two distinct frequencies, i.e. 2.1 and 3.4 GHz, and has a pattern tilt from 0° to 355°. The conductor backed CPW feed technique is used for impedance matching.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 7 April 2015

Prabal Pratap, Ravinder Singh Bhatia and Binod Kumar

The purpose of this paper is to study and calculate the electrical characteristic of an equilateral triangular microstrip patch antenna that is proposed for dual frequency…

Abstract

Purpose

The purpose of this paper is to study and calculate the electrical characteristic of an equilateral triangular microstrip patch antenna that is proposed for dual frequency operation using the pin diode. The electrical characteristic of an equilateral triangular microstrip patch antenna is proposed for dual-frequency operation. Spur lines and ON/OFF condition of the pin diode are utilized to switch the resonant frequency of the patch. The presence of spur lines excites the surface current of the patch which is dependent on the resonant frequency of an equilateral triangular microstrip patch. Insertion of the diode in the spur lines gives a better result and compactness in patch design, which improves the miniaturization in size of patch.

Design/methodology/approach

Antenna Design Aspects: A basic structure of an equilateral triangular microstrip antenna (ETMA) having two spur lines and one pin diode positioned in between the spur line is considered in this paper. The design parameters are chosen on the basis of substrate materials having relative permittivity less than three. Specification of the antenna is given in Table I. Substrate material used is RT Duroid 5,880; relative permittivity of the substrate er is 2.2; thickness of dielectric substrate h is 1.5 mm; sides of equilateral triangular patch a are 10 mm, spur width s is 0.5 mm; and spur length b is 2.0 mm.

Findings

This paper gives an account of achieving polarization swiftness with coplanar waveguide (CPW) feed. The miniaturized size of the antenna is 35 × 30 mm2. Switchable microstrip equilateral triangular antenna has been demonstrated for dual-frequency operations. The resonant frequency of an ETMA can be adjusted by setting the diode in an ON and OFF state. The design improves the miniaturization in size with a discussion of radiation density. The excited patch surface current is limited to flow around just the mid of the patch in simple ETMA with a single slit cut. It is observed that for an ETMA, when the diode is in the ON state at 9.16 GHz, the excited patch surface current is highly distributed in the patch compared to when the diode is in the ON state at 11 GHz. Similarly, it is observed that the excited surface patch current is highly distributed when the diode is in the OFF state in both frequencies (9 and 11.96 GHz). The mode is changed by the use of a switch at time and it is suitable for wireless communication applications.

Originality/value

Spur lines and the ON/OFF condition of the pin diode are utilized to switch the resonant frequency of the patch. The presence of spur lines excites the surface current of the patch which is dependent on the resonant frequency of an equilateral triangular microstrip patch. Insertion of the diode in spur lines gives a better result and compactness in patch design, which improves the miniaturization in size of the patch.

Details

International Journal of Pervasive Computing and Communications, vol. 11 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 1 April 1994

Margaret E Clarke and Suhail Rahim

Models of power semiconductor devices for use in circuit simulators need to take account of effects which can be neglected in low power device models; they then become very…

Abstract

Models of power semiconductor devices for use in circuit simulators need to take account of effects which can be neglected in low power device models; they then become very complex and difficult to parameterise. The power PIN diode model described in this paper demonstrates how the use of empirically derived look‐up tables can simplify the characterisation problem and how non quasi‐static effects can be incorporated

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 13 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 3 August 2015

Marcin Myśliwiec, Ryszard Kisiel and Marek Guziewicz

The purpose of this paper is to deal with material and technological aspects of SiC diodes assembly in ceramic packages. The usefulness of combinations of different materials and…

Abstract

Purpose

The purpose of this paper is to deal with material and technological aspects of SiC diodes assembly in ceramic packages. The usefulness of combinations of different materials and assembly techniques for the creation of inner connection system in the ceramic package, as well as the formation of outer connections able to work at temperatures up to 350°C, were evaluated.

Design/methodology/approach

The ceramic package consists of direct bonded copper (DBC) substrate with Cu pads electroplated by Ni or Ni/Au layers on which a SiC diode was assembled by sintering process using Ag microparticles. For the connections inside the ceramic package, the authors used Al/Ni and Au-Au material system based on aluminium or gold wire bonding. The authors sealed the ceramic package with glass encapsulation and achieved a full encapsulation. Outer connections were manufactured using Cu ribbon plated with Ag layer and sintered to DBC by Ag micro particle. The authors investigated the long-term stability of electrical parameters of SiC diodes assembled in ceramic package at temperature 350°C.

Findings

The authors have shown that Schottky and PiN SiC diodes assembled with different technologies and materials in ceramic package keep their I-V characteristics unchanged during ageing at 350°C for 400 h.

Originality/value

The SiC diodes assembled into ceramic package with Al/Ni or Au-Au inner electrical connection systems and outer connections system based on Ag microparticles sintering process of Cu/Ag ribbon to DBC substrate can work reliably in temperature range up to 350°C.

Details

Microelectronics International, vol. 32 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 September 1997

M. Isberg, P. Jonsson, N. Keskitalo, F. Masszi and H. Bleicher

Shows how a sensitivity analysis of different mobility models was carried out in order to reach the best fit of simulation results to measured data. Simulated data were compared…

Abstract

Shows how a sensitivity analysis of different mobility models was carried out in order to reach the best fit of simulation results to measured data. Simulated data were compared to both electrical (IV‐characteristics) and optical (excess charge carrier distribution) results. The simulations included both steady state and transient investigations on a temperature scale ranging from room temperature up to 150°C. Concerning lifetimes, a two‐trap Shockley‐Read‐Hall (SRH) recombination model was implemented into the simulation code to be able to model the local lifetime variations of the irradiated samples. At high carrier concentration, the overall dominating recombination process is the Auger process. From experimental data the Auger coefficients seem to be concentration dependent too, and in addition, proposes a temperature dependence to the Auger coefficient.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 16 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 June 2022

Ponnammal P. and Manjula J.

Modern wireless communications need novel microwave components that can be effectively used for high data rate and low-power applications. The operating environment decides the…

Abstract

Purpose

Modern wireless communications need novel microwave components that can be effectively used for high data rate and low-power applications. The operating environment decides the severity of the noise coupled to the transceiver system from the ambient environment. In a deep fading environment, narrowband systems fail where the wideband systems come for rescue. Thus, the microwave components are ought to switch between the narrowband and wideband states. This paper aims to study the design of a bandpass filter to meet the requirements by appropriately switching between the dual narrowband frequencies and single ultra-wideband frequency band.

Design/methodology/approach

The design and implementation of a compact microwave filter with reconfigurable bandwidth characteristics are presented in this paper. The proposed filter is constructed using a hexagonal ring with shorted perturbation along one corner. The filter is capacitively coupled to the external excitation source. External stubs are connected to the corners of the hexagonal resonator to obtain dual passband characteristics centred at 2.1 and 4.5 GHz. The external stubs are configured to achieve bandwidth reconfigurable characteristics. PIN diodes are used with a suitable biasing network to obtain reconfiguration. In the reconfigured state, the proposed two-port filter offers a continuous bandwidth from 2.1 to 5.9 GHz. The roll-off rate along the band edges is improved by increasing the order of the filter.

Findings

The proposed filter operates in two states. In state 1, the filter operates with dual frequencies centred around 2 and 4.5 GHz with insertion loss less than <1 dB and return loss greater than 13 dB with a peak return loss of 21 and 31 dB at 2.1 and 2.15 GHz, respectively. In state 2, the filter operates from 2.1 to 5.9 GHz with insertion loss less than 1 dB and return loss greater than 12 dB. The filter exhibits four-pole characteristics with a peak return loss greater than 22 dB. Thus, the fractional bandwidth of the proposed filter is 17% and 16% in state 1, whereas the fractional bandwidth is 95% in state 2.

Originality/value

The proposed filter is the first of its kind to simultaneously offer miniaturization and bandwidth reconfiguration. The proposed second-order filter has two-pole characteristics in the narrowband state, whereas four-pole characteristics are realized in the wideband state. The growing interest in 4G and 5G wireless communications makes the proposed filter a suitable candidate for operation in the rich scattering environment.

Details

Microelectronics International, vol. 39 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 9 May 2022

Ajit Kumar Singh, Santosh Kumar Mahto and Rashmi Sinha

This study aims to present dual band reconfigurable MIMO antenna for 5G (sub-6 GHz) and WLAN applications.

Abstract

Purpose

This study aims to present dual band reconfigurable MIMO antenna for 5G (sub-6 GHz) and WLAN applications.

Design/methodology/approach

To achieve optimum bandwidth, radiation pattern and radiation efficiency, the defected ground structure (DGS) and a rectangular stub connected with the DGS are used. To further cover the sub-6 GHz spectrum (3.4–3.6 GHz) for future 5G communications, a two-element multi-input multi-output (MIMO) antenna configuration is designed by using the single element antenna. The proposed reconfigurable MIMO antenna using a PIN diode is designed on an FR4 substrate with a dielectric constant of 4.4 and a loss tangent of 0.02 and a 35 × 20 × 1.6 mm3 dimension.

Findings

The proposed antenna achieved dual operating bands of 3.4–4.1 GHz (5 G sub-6GHz applications) and 4.99–5.16 GHz (WLAN application) in the D = ON state. For D = OFF state, the proposed antenna achieved 3.55–3.65 GHz and 3.66–4.05 GHz frequency bands for 5G (sub-6GHz) applications. In terms of the envelop correlation coefficient, diversity gain, mean effective gain, total active reflection coefficient and isolation between the ports, the proposed antenna’s diversity performance characteristics are investigated and the obtained values are 0.05, 9.9 dB, ±3dB, −4dB, −15dB, respectively.

Research limitations/implications

The fabricated prototype antenna on FR4 substrate has measurable parameters that are in good agreement with the simulated findings. Due to hardware design limitations, there is a minor difference between software and hardware results.

Originality/value

The proposed MIMO antenna is compact and reconfigurable for 5G (sub-6GHz) and WLAN applications, and from the graph, the measurements and simulations have been found to be in close agreement.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 November 2012

Redha Benachour, Saïda Latreche, Mohamed El Hadi Latreche and Christian Gontrand

The present work aims to explain how the nonlinear average model can be used in power electronic integration design as a behavioral model.

Abstract

Purpose

The present work aims to explain how the nonlinear average model can be used in power electronic integration design as a behavioral model.

Design/methodology/approach

The nonlinear average model is used in power electronic integration design as a behavioral model, where it is applied to a voltage source inverter based on IGBTs. This model was chosen because it takes into account the nonlinearity of the power semiconductor components and the wiring circuit effects, which can be formalized by the virtual delay concept. In addition, the nonlinear average model cannot distinguish between slow and quick variables and this is an important feature of the model convergence.

Findings

The paper studies extensively the construction of the nonlinear average model algorithm theoretically. Detailed explanations of the application of this model to voltage source inverter design are provided. The study demonstrates how this model illustrates the effect of the nonlinearity of the power semiconductor components' characteristics on dynamic electrical quantities. It also predicts the effects due to wiring in the inverter circuit.

Research limitations/implications

More simulations and experimental analysis are still necessary to improve the model's accuracy, by using other static characteristic approaches, and to validate the applicability of the model to different converter topologies.

Practical implications

The paper formulates a simple nonlinear average model algorithm, discussing each step. This model was described by VHDL‐AMS. On the one hand, it will assist theoretical and practical research on different topologies of power electronic converters, particularly in power integration systems design such as the integrated power electronics modules (IPEM). On the other hand, it will give designers a more precise behavioral model with a simpler design process.

Originality/value

The nonlinear average model used in power electronic integration design as behavioral model is a novel approach. This model reduces computational costs significantly, takes physical effects into account and is easy to implement.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 338