Search results

1 – 10 of 304
Article
Publication date: 1 February 2018

Jan Felba

This paper aims to find proper technological parameters of low-temperature joining technique by silver sintering to eventually use this technique for reliable electronic packaging.

Abstract

Purpose

This paper aims to find proper technological parameters of low-temperature joining technique by silver sintering to eventually use this technique for reliable electronic packaging.

Design/methodology/approach

Based on the literature and author’s own experience, the factors influencing the nanosized Ag particle sintering results were identified, and their significance was assessed.

Findings

It has been shown that some important technological parameters clearly influence the quality of the joints, and their choice is unambiguous, but the meaning of some parameters is dependent on other factors (interactions), and they should be selected experimentally.

Originality/value

The value of this research is that the importance of all technological factors was analyzed, which makes it easy to choose the technological procedures in the electronic packaging.

Details

Circuit World, vol. 44 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 22 July 2020

Ryszard Kisiel, Marek Guziewicz, Andrzej Taube, Maciej Kaminski and Mariusz Sochacki

This paper aims to investigate the sintering and solid liquid interdiffusion bonding (SLID) techniques to attach AlGaN/GaN-on-Si chips to direct bond copper (DBC) substrate. The…

Abstract

Purpose

This paper aims to investigate the sintering and solid liquid interdiffusion bonding (SLID) techniques to attach AlGaN/GaN-on-Si chips to direct bond copper (DBC) substrate. The influence of metal layers deposited on the backside of AlGaN/GaN-on-Si dies on the assembly process is also investigated.

Design/methodology/approach

The authors assumed the value of the shear strength to be a basic parameter for evaluation of mechanical properties. Additionally, the surface condition after shearing was assessed by SEM photographs and the shear surface was studied by X-ray diffraction method. The SLID requires Sn-plated DBC substrate and can be carried out at temperature slightly higher than 250°C and pressure reduced to 4 MPa, while the sintering requires process temperature of 350°C and the pressure at least 7.5 MPa.

Findings

Ag-, Au-backside covered high electron mobility transistor (HEMT) chips can be assembled on Sn-plated DBC substrates by SLID technology. In case of sintering technology, Cu- or Ag-backside covered HEMT chips can be assembled on Ag- or Ni/Au-plated DBC substrates. The SLID process can be realized at lower temperature and decreased pressure than sintering process.

Research limitations/implications

For SLID technology, the adhesion between Cu-backside covered HEMT die and DBC with Sn layer loses its operational properties after short-term ageing in air at temperature of 300°C.

Originality/value

In the SLID process, Sn-Cu and Sn-Ag intermetallic compounds and alloys are responsible for creation of the joint between Sn-plated DBC and micropowder Ag layer, while the sintered joint between the chip and Ag-based micropowder is formed in diffusion process.

Details

Circuit World, vol. 47 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 5 January 2015

Marcin Myśliwiec and Ryszard Kisiel

The purpose of our paper is to investigate thermal and mechanical properties of Ag sintered layers used for assembly of SiC diode to Direct Bonding Copper (DBC) interposer. How…

Abstract

Purpose

The purpose of our paper is to investigate thermal and mechanical properties of Ag sintered layers used for assembly of SiC diode to Direct Bonding Copper (DBC) interposer. How SiC devices are assembled to ceramic package defines efficiency of heat transfer and mechanical support.

Design/methodology/approach

Ag microparticles, sized 2-4 μm and flake shaped, were used as joining material. The parameters of sintering process were as follows: temperature 400°C, pressure 10 MPa and time 40 min. It was found that after sintering and long-term aging in air at 350°C the adhesion is in the range of 10 MPa, which is enough from a practical point of view. The thermal properties of the SiC die assembled into a ceramic package were also investigated. In the first step, the calibration of the temperature-sensitive parameter VF (IF = 2 mA) was done and the relation between VF and temperature was found. In the next step, the thermal resistance between junction and case was determined knowing junction and case temperature.

Findings

For SiC diode with Au bottom metallization joined to the DBC interposer by Ni/Au metallization by Ag microparticle layer, Rth j-c is in the range of 2-3.5°C/W, and for SiC diode with Ag bottom metallization joined to DBC interposer with Ag metallization by Ag microparticle layer, Rth j-c is in the range of 4.5-5.5°C/W.

Research limitations/implications

In the future, research on thermal resistance of SiC diodes assembled onto the DBC interposer with Au and Ag metallization in the temperature range up to 350°C needs to be carried out. To do this, it necessary to find a solution for the attaches that leads to ceramic package able to work at such high temperature.

Originality/value

Obtained results are comparable with results mentioned by other studies for eutectic Au/Sn or SAC solder joints; however, the solution proposed by us can properly work at significantly higher temperatures.

Details

Microelectronics International, vol. 32 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Open Access
Article
Publication date: 13 October 2022

Marcin Myśliwiec, Ryszard Kisiel and Mirosław J. Kruszewski

The purpose of this paper is to develop and test the thermal interface materials (TIM) for application in assembly of semiconductor chips to package. Good adhesion properties…

Abstract

Purpose

The purpose of this paper is to develop and test the thermal interface materials (TIM) for application in assembly of semiconductor chips to package. Good adhesion properties (>5 MPa shear strength) and low thermal interface resistance (better than for SAC solders) are the goal of this research.

Design/methodology/approach

Mechanical and thermal properties of TIM joints between gold plated contacts of chip and substrate were investigated. Sintering technique based on Ag pastes was applied for purpose of this study. Performance properties were assessed by shear force tests and thermal measurements. Scanning electron microscopy was used for microstructural observations of cross-section of formed joints.

Findings

It was concluded that the best properties are achieved for pastes containing spherical Ag particles of dozens of micrometer size with flake shaped Ag particles of few micrometers size. Sintering temperature at 230°C and application of 1 MPa force on the chip during sintering gave the higher adhesion and the lowest thermal interface resistance.

Originality/value

The new material based on Ag paste containing mixtures of Ag particles of different size (form nanometer to dozens of microns) and shape (spherical, flake) suspended in resin was proposed. Joints prepared using sintering technique and Ag pastes at 230°C with applied pressure shows better mechanical and thermal than other TIM materials such as thermal grease, thermal gel or thermally conductive adhesive. Those material could enable electronic device operation at temperatures above 200°C, currently unavailable for Si-based power electronics.

Details

Microelectronics International, vol. 39 no. 4
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 18 January 2019

Alena Pietrikova, Tomas Girasek, Lubomir Livovsky, Juraj Durisin and Karel Saksl

The purpose of this paper was to investigate an influence of a low temperature pressureless sintering process of silver paste on the quality of sintered joints.

Abstract

Purpose

The purpose of this paper was to investigate an influence of a low temperature pressureless sintering process of silver paste on the quality of sintered joints.

Design/methodology/approach

The authors analyzed various curing conditions of the paste during its sintering process: 175°C/90 min, 200°C/60 min, 250°C/30 min, 250°C/60 min, 350°C/30 min and 350°C/60 min. They analyzed an influence of the surface plating applied on a ceramic substrate/layer (Cu, Ag, AgPt and Au thick film) on the joints quality. The authors analyzed microstructure and electrical resistance of the joints. They evaluated these properties from the point of view of thermal aging process and changing resistance, after a constant current loading of the sintered joints.

Findings

The nanoscale pressureless silver paste can be applied for replacing a pressure-assisted micro-sized silver paste. It was found that the quality of the metal plating applied on the ceramic substrate/layer has a significant impact on the quality of the sintered joints. Copper and AgPt plating have better impact on quality of sintered joints in compare with Ag plating.

Originality/value

This investigation of the quality of the pressureless sintered joints at the silver-silver interface reveals an evident cracking immediately after the silver paste curing. Rapid sintering process typical for silver-based films on the substrate is because of the inter-diffusion between the micro and nanoparticles of silver at interfacial interface.

Details

Circuit World, vol. 45 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 January 2014

Rainer Dudek, Peter Sommer, Andreas Fix, Joerg Trodler, Sven Rzepka and Bernd Michel

Because of the need for electronics use at temperatures beyond 150°C, high temperature resistant interconnection technologies like transient liquid phase (TLP) soldering and…

Abstract

Purpose

Because of the need for electronics use at temperatures beyond 150°C, high temperature resistant interconnection technologies like transient liquid phase (TLP) soldering and silver sintering are being developed which are not only replacements of high-lead solders, but also open new opportunities in terms of temperature resistance and reliability. The paper aims to address the thermo-mechanical reliability issues that have to be considered if the new interconnection technologies will be applied.

Design/methodology/approach

A TLP soldering technique is briefly introduced and new challenges concerning the thermo-mechanical reliability of power devices are worked out by numerical analysis (finite element simulation). They arise as the material properties of the interconnect materials differ substantially from those known for soft solders. The effective material responses of the new materials are determined by localized unit cell models that capture the inhomogeneous structure of the materials.

Findings

It is shown that both the TLP solder layer and the Ag-sinter layer have much less ductility and show less creep than conventional soft solders. The potential failure modes of an assembly made by TLP soldering or Ag sintering change. In particular, the characteristic low cycle fatigue solder failures become unlikely and are replaced either by metallization fatigue, brittle failure of intermetallic compound, components, or interfaces.

Originality/value

A variety of new failure risks, which have been analyzed theoretically, can be avoided only if they are known to the potential user of the new techniques. It is shown that an optimal reliability will be strongly dependent on the actual assembly design.

Details

Soldering & Surface Mount Technology, vol. 26 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 3 August 2015

Marcin Myśliwiec, Ryszard Kisiel and Marek Guziewicz

The purpose of this paper is to deal with material and technological aspects of SiC diodes assembly in ceramic packages. The usefulness of combinations of different materials and…

Abstract

Purpose

The purpose of this paper is to deal with material and technological aspects of SiC diodes assembly in ceramic packages. The usefulness of combinations of different materials and assembly techniques for the creation of inner connection system in the ceramic package, as well as the formation of outer connections able to work at temperatures up to 350°C, were evaluated.

Design/methodology/approach

The ceramic package consists of direct bonded copper (DBC) substrate with Cu pads electroplated by Ni or Ni/Au layers on which a SiC diode was assembled by sintering process using Ag microparticles. For the connections inside the ceramic package, the authors used Al/Ni and Au-Au material system based on aluminium or gold wire bonding. The authors sealed the ceramic package with glass encapsulation and achieved a full encapsulation. Outer connections were manufactured using Cu ribbon plated with Ag layer and sintered to DBC by Ag micro particle. The authors investigated the long-term stability of electrical parameters of SiC diodes assembled in ceramic package at temperature 350°C.

Findings

The authors have shown that Schottky and PiN SiC diodes assembled with different technologies and materials in ceramic package keep their I-V characteristics unchanged during ageing at 350°C for 400 h.

Originality/value

The SiC diodes assembled into ceramic package with Al/Ni or Au-Au inner electrical connection systems and outer connections system based on Ag microparticles sintering process of Cu/Ag ribbon to DBC substrate can work reliably in temperature range up to 350°C.

Details

Microelectronics International, vol. 32 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 February 2003

Dongfeng Zheng, Minbo Tian, Yingqian Wang and Wei He

A silver‐palladium thick film conductor for aluminum nitride (AlN) substrate has been developed. This conductor film on AlN ceramics had low sheet resistivity, high adhesion…

Abstract

A silver‐palladium thick film conductor for aluminum nitride (AlN) substrate has been developed. This conductor film on AlN ceramics had low sheet resistivity, high adhesion strength and good wettability with Pb‐Sn solder. The frit powder of lead borosilicate glass was used as inorganic binders to enhance the adhesion between the conductor and ceramics. After sintering the conductor film connected with the AlN substrate through frit bonding, no transition phases but a multilayer structure is present in the interface. The softening point of the glass was important to the adhesion strength of conductor film. In order to achieve good adhesion, it is necessary that the glass has a proper softening point (about 500‐650°C).

Details

Pigment & Resin Technology, vol. 32 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 27 November 2023

Meng Jiang, Yang Liu, Ke Li, Zhen Pan, Quan Sun, Yongzhe Xu and Yuan Tao

The purpose of this paper is to study the reliability of sintered nano-silver joints on bare copper substrates during high-temperature storage (HTS).

Abstract

Purpose

The purpose of this paper is to study the reliability of sintered nano-silver joints on bare copper substrates during high-temperature storage (HTS).

Design/methodology/approach

In this study, HTS at 250 °C was carried out to investigate the reliability of nano-silver sintered joints. Combining the evolution of the microstructure and shear strength of the joints, the degradation mechanisms of joints performance were characterized.

Findings

The results indicated that the degradation of the shear properties of sintered nano-silver joints on copper substrates was attributed to copper oxidation at the silver/copper interface and interdiffusion of interfacial elements. The joints decreased by approximately 57.4% compared to the original joints after aging for 500 h. In addition, severe coarsening of the silver structure was also an important cause for joints failure during HTS.

Originality/value

This paper provides a comparison of quantitative and mechanistic evaluation of sintered silver joints on bare copper substrates during HTS, which is of great importance in promoting the development of sintered silver technology.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 May 2019

Qiaoran Zhang, Abdelhafid Zehri, Jiawen Liu, Wei Ke, Shirong Huang, Martí Gutierrez Latorre, Nan Wang, Xiuzhen Lu, Cheng Zhou, Weijuan Xia, Yanpei Wu, Lilei Ye and Johan Liu

This study aims to develop a bimodal nano-silver paste with improved mechanical property and reliability. Silicon carbide (SiC) particles coated with Ag were introduced in…

Abstract

Purpose

This study aims to develop a bimodal nano-silver paste with improved mechanical property and reliability. Silicon carbide (SiC) particles coated with Ag were introduced in nano-silver paste to improve bonding strength between SiC and Ag particles and enhance high-temperature stability of bimodal nano-silver paste. The effect of sintering parameters such as sintering temperature, sintering time and the proportion of SiC particles on mechanical property and reliability of sintered bimodal nano-silver structure were investigated.

Design/methodology/approach

Sandwich structures consist of dummy chips and copper substrates with nickel and silver coating bonded by nano-silver paste were designed for shear testing. Shear strength testing was conducted to study the influence of SiC particles proportions on the mechanical property of sintered nano-silver joints. The reliability of the bimodal nano-silver paste was evaluated experimentally by means of shear test for samples subjected to thermal aging test at 150°C and humidity and temperature testing at 85°C and 85 per cent RH, respectively.

Findings

Shear strength was enhanced obviously with the increase of sintering temperature and sintering time. The maximum shear strength was achieved for nano-silver paste sintered at 260°C for 10 min. There was a negative correlation between the proportion of SiC particles and shear strength. After thermal aging testing and humidity and temperature testing for 240 h, the shear strength decreased a little. High-temperature stability and high-hydrothermal stability were improved by the addition of SiC particles.

Originality/value

Submicron-scale SiC particles coated with Ag were used as alternative materials to replace part of nano-silver particles to prepare bimodal nano-silver paste due to its high thermal conductivity and excellent mechanical property.

Details

Soldering & Surface Mount Technology, vol. 31 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 304