Search results

1 – 10 of over 20000
Article
Publication date: 25 June 2020

Rajasekar P. and Mangalam H.

The growing trends in the usage of hand held devices necessitate the need to design them with low power consumption and less area design. Besides, information security is gaining…

Abstract

Purpose

The growing trends in the usage of hand held devices necessitate the need to design them with low power consumption and less area design. Besides, information security is gaining enormous importance in information transmission and data storage technology. In addition, today’s technology world is connected, communicated and controlled via the Internet of Things (IoT). In many applications, the most standard and widely used cryptography algorithm for providing security is Advanced Encryption Standard (AES). This paper aims to design an efficient model of AES cryptography for low power and less area.

Design/methodology/approach

First, the main issues related to less area and low power consumption in the AES encryption core are addressed. To implement optimized AES core, the authors proposed optimized multiplicative inverse, affine transforms and Xtime multipliers functions, which are the core function of AES’s core. In addition, to achieve the high throughput, it uses the multistage pipeline and resource reuse architectures for SBox and Mixcolumn of AES.

Findings

The results of optimized AES architecture have revealed that the multistage pipe line and resource sharing are optimal design model in Field Programmable Gate Array (FPGA) implementation. It could provide high security with low power and area for IoT and wireless sensors networks.

Originality/value

This proposed optimized modified architecture has been implemented in FPGA to calculate the power, area and delay parameters. This multistage pipeline and resource sharing have promised to minimize the area and power.

Details

Circuit World, vol. 47 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 10 August 2021

B.N. Mohan Kumar and H.G. Rangaraju

Digital signal processing (DSP) applications such as finite impulse response (FIR) filter, infinite impulse response and wavelet transformation functions are mainly constructed…

Abstract

Purpose

Digital signal processing (DSP) applications such as finite impulse response (FIR) filter, infinite impulse response and wavelet transformation functions are mainly constructed using multipliers and adders. The performance of any digital applications is dependent on larger size multipliers, area and power dissipation. To optimize power and area, an efficient zero product and feeder register-based multiplier (ZP and FRBM) is proposed. Another challenging task in multipliers is summation of partial products (PP), results in more delay. To address this issue, the modified parallel prefix adder (PPA) is incorporated in multiplier design. In this work, different methods are studied and analyzed for designing FIR filter, optimized with respect to area, power dissipation, speed, throughput, latency and hardware utilization.

Design/methodology/approach

The distributed arithmetic (DA)-based reconfigurable FIR design is found to be suitable filter for software-defined radio (SDR) applications. The performance of adder and multipliers in DA-FIR filter restricts the area and power dissipation due to their complexity in terms of generation of sum and carry bits. The hardware implementation time of an adder can be reduced by using PPA which is based on Ling equation. The MDA-RFIR filter is designed for higher filter length (N), i.e. N = 64 with 64 taps and this design is developed using Verilog hardware description language (HDL) and implemented on field-programmable gate array. The design is validated for SDR channel equalizer; both RFIR and SDR are integrated as single system and implemented on Artix-7 development board of part name XC7A100tCSG324.

Findings

The MDA-RFIR for N = 64 is optimized about 33% in terms of area-delay, power-speed product and energy efficiency. The theoretical and practical comparisons have been done, and the practically obtained results are compared with existing DA-RFIR designs in terms of throughput, latency, area-delay, power-speed product and energy efficiency are better about 3.5 times, 31, 45 and 29%, respectively.

Originality/value

The MDA-RFIR for N = 64 is optimized about 33% in terms of area-delay, power-speed product and energy efficiency.

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 23 January 2009

C.M.R. Prabhu and Ajay Kumar Singh

Low power static‐random access memories (SRAM) has become a critical component in modern VLSI systems. In cells, the bit‐lines are the most power consuming components because of…

Abstract

Purpose

Low power static‐random access memories (SRAM) has become a critical component in modern VLSI systems. In cells, the bit‐lines are the most power consuming components because of larger power dissipation in driving long bit‐line with large capacitance. The cache write consumes considerable large power due to full voltage swing on the bit‐line. The aim of the paper is to propose a new SRAM cell architecture to reduce the power consumption during write 0 and write 1 operation.

Design/methodology/approach

The proposed circuit includes two tail transistors in the pull‐down path of inv‐A and inv‐B. The simulated results of the proposed cell is compared with Conventional 6T SRAM cell and zero‐asymmetric SRAM cell.

Findings

The proposed SRAM cell consumes less power than the conventional SRAM cell during write operation. The write access delay is reported to be lower than conventional and ZA SRAMs in the proposed circuit. The read operation is similar to Conventional SRAM cell but due to tail transistors the read access delay and stability is poor in the present circuit which can be improved by careful transistors sizing.

Originality/value

The paper proposes a SRAM cell to reduce the power in write “0” as well as write “1”operation by introducing two tail transistors.

Details

Microelectronics International, vol. 26 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 12 June 2017

Vaithiyanathan Dhandapani

Adders play a vital role in almost all digital designs, as all four arithmetic operations can be confined within addition. Hence, area and power optimization of the adders will…

Abstract

Purpose

Adders play a vital role in almost all digital designs, as all four arithmetic operations can be confined within addition. Hence, area and power optimization of the adders will result in overall circuit optimization. Being the fastest adder, the carry select adder (CSLA) gains higher importance among the different adder styles. However, it suffers from the drawback of increased power and area. The implementation of CSLA in digital circuits requires lots of study for optimization. Hence, to overcome this problem, various improvements were made to the CSLA structure to reduce area and, consequently, reduce power. Among these, modified CSLAs show a significant improvement, as they utilize a binary excess-1 code (BEC) to replace the add-one circuit.

Design/methodology/approach

This paper presents further enhancement in the modified CSLA by proposing a decision-based CSLA, which activates BEC on demand. This leads to reduced switching activity. The performance of the proposal is done by analyzing and comparing it with different adders. The comparison is done on the basis of three performance parameters: area, speed and power consumption. This is done by implementing the architecture on Xilinx Virtex5 XC5VLX30 in Verilog environment and is synthesized using Cadence® RTL Compiler® using TSMC 180-nm CMOS cell library.

Findings

Optimization of power, area and increasing the speed of operation are the three main areas of research in very-large-scale integration (VLSI) design for portable devices. As adders are the most fundamental units for any VLSI design, optimization at the adder level has a huge impact on the overall circuit. The modified CSLA has a BEC which continuously switches irrespective of the previous carry bit generated. The unwanted switching results in excess power consumption while also introducing additional delay. Hence, the author has proposed a decider circuit to avoid this excess switching activity. This allows switching of the BEC only when a previous carry is generated. The modified CSLA is based on the ripple carry adder, while the decider-based CSLA utilizes a carry look-ahead adder. This makes a decider-based CSLA faster while utilizing less area and power consumption when compared to the modified CSLA.

Originality/value

The efficiency of the proposed decider-based CSLA has been verified using Cadence RTL Compiler using TSMC 180-nm CMOS cell library and has been found to have 17 per cent power and 11.57 per cent area optimization when compared to the modified CSLA, while maintaining operating frequency.

Details

World Journal of Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 June 2021

C. Srinivasa Murthy and K. Sridevi

In this paper, the authors present different methods for reconfigurable finite impulse response (RFIR) filter design. Distributed arithmetic (DA)-based reconfigurable FIR filter…

Abstract

Purpose

In this paper, the authors present different methods for reconfigurable finite impulse response (RFIR) filter design. Distributed arithmetic (DA)-based reconfigurable FIR filter design is suitable for software-defined radio (SDR) applications. The main contribution of reconfiguration is reuse of registers, multipliers, adders and to optimize various parameters such as area, power dissipation, speed, throughput, latency and hardware utilizations of flip-flops and slices. Therefore, effective design of building blocks will be optimized for RFIR filter with all the above parameters.

Design/methodology/approach

The modified, direct form register structure of FIR filter contributes the reuse concept and allows utilization of less number of registers and parallel computation operations. The disadvantage of DA and other conventional methods is delay increases proportionally with filter length. This is due to different partial products generated by adders. The usage of adder and multipliers in DA-FIR filter restricts the area and power dissipation because of their complexity of generation of sum and carry bits. The hardware implementation time of an adder can be reduced by parallel prefix adder (PPA) usage based on Ling equation. PPA uses shift-add multiplication, which is a repetitive process of addition, and this process is known as Bypass Zero feed multiplicand in direct multiplication, and the proposed technique optimizes area-power product efficiently. The modified DA (MDA)-based RFIR filter is designed for 64 taps filter length (N). The design is developed by using Verilog hardware description language and implemented on field-programmable gate array. Also, this design validates SDR channel equalizer.

Findings

Both RFIR and SDR are integrated as single system and implemented on Artix-7 development board of XC7A100tCSG324 and exploited the advantages in area-delay, power-speed products and energy efficiency. The theoretical and practical comparisons have been carried out, and the results are compared with existing DA-RFIR designs in terms of throughput, latency, area-delay, power-speed products and energy efficiency, which are improved by 14.5%, 23%, 6.5%, 34.2% and 21%, respectively.

Originality/value

The DA-based RFIR filter is validated using Chipscope Pro software tool on Artix-7 FPGA in Xilinx ISE design suite and compared constraint parameters with existing state-of-art results. It is also tested the filtering operation by applying the RFIR filter on Audio signals for removal of noisy signals and it is found that 95% of noise signals are filtered effectively.

Article
Publication date: 29 July 2021

D.S. Shylu Sam and P. Sam Paul

In parallel sampling method, the size of the sampling capacitor is reduced to improve the bandwidth of the ADC.

Abstract

Purpose

In parallel sampling method, the size of the sampling capacitor is reduced to improve the bandwidth of the ADC.

Design/methodology/approach

Various low-power techniques for 10-bit 200MS/s pipelined analog-to-digital converter (ADC) are presented. This work comprises two techniques including parallel sampling and switched op-amp sharing technique.

Findings

This paper aims to study the effect of parallel sampling and switched op-amp sharing techniques on power consumption in pipelined ADC. In switched op-amp sharing technique, the numbers of op-amps used in the stages are reduced. Because of the reduction in the size of capacitors in parallel sampling technique and op-amps in the switched op-amp sharing technique, the power consumption of the proposed pipelined ADC is reduced to a greater extent.

Originality/value

Simulated the 10-bit 200MS/s pipelined ADC with complementary metal oxide semiconductor process and the simulation results shows a maximum differential non-linearity of +0.31/−0.31 LSB and the maximum integral non-linearity (of +0.74/−0.74 LSB with 62.9 dB SFDR, 55.90 dB SNDR and ENOB of 8.99 bits, respectively, for 18mW power consumption with the supply voltage of 1.8 V.

Details

Circuit World, vol. 47 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 March 2022

Santosh Kumar B. and Krishna Kumar E.

In real-time entertainment processing applications, processing of the multiple data streams demands high efficient multiple transfers, which leads to the computational overhead…

Abstract

Purpose

In real-time entertainment processing applications, processing of the multiple data streams demands high efficient multiple transfers, which leads to the computational overhead for system-on-chip (SoC), which runs the artificial intelligence algorithms. High-performance direct memory access controller (DMAC) is incorporated in SoC to perform the multiple data transfers without the participation of main processors. But achieving the area-efficient and power-aware DMAC suitable for streaming the multiple data remains to be a daunting challenge among the researchers.

Design/methodology/approach

The purpose of this paper to provide the DMA operations without intervention of central processing unit (CPU) for bulk video data transmissions.

Findings

The proposed DMAC has been developed based on the hybrid advanced extensible interface (AXI)-PCI bus subsystem to handle the multiple data streams from the video sources. The proposed model consists of bus selector module, user control signal, status register, DMA-supported address and AXI-PCI subsystems to achieve better performance in analysing the video frames.

Originality/value

The extensive experimentation is carried out with Xilinx Zynq SoC architecture using Very High Speed integrated circuit hardware description language (VHDL) programming, and performance metrics such as utilization area and power are calculated and compared with the other existing DMA controllers such as Scatter-DMA, Gather-DMA and Enhanced DMA. Simulation results demonstrate that the proposed DMAC has outperformed other existing DMAC in terms of less area, less delay and power, which makes the proposed model suitable for streaming multiple video streams.

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 10 March 2021

Afshan Amin Khan, Roohie Naaz Mir and Najeeb-Ud Din

This work focused on a basic building block of an allocation unit that carries out the critical job of deciding between the conflicting requests, i.e. an arbiter unit. The purpose…

Abstract

Purpose

This work focused on a basic building block of an allocation unit that carries out the critical job of deciding between the conflicting requests, i.e. an arbiter unit. The purpose of this work is to implement an improved hybrid arbiter while harnessing the basic advantages of a matrix arbiter.

Design/methodology/approach

The basic approach of the design methodology involves the extraction of traffic information from buffer signals of each port. As the traffic arrives in the buffer of respective ports, information from these buffers acts as a source of differentiation between the ports receiving low traffic rates and ports receiving high traffic rates. A logic circuit is devised that enables an arbiter to dynamically assign priorities to different ports based on the information from buffers. For implementation and verification of the proposed design, a two-stage approach was used. Stage I comprises comparing the proposed arbiter with other arbiters in the literature using Vivado integrated design environment platform. Stage II demonstrates the implementation of the proposed design in Cadence design environment for application-specific integrated chip level implementation. By using such a strategy, this study aims to have a special focus on the feasibility of the design for very large-scale integration implementation.

Findings

According to the simulation results, the proposed hybrid arbiter maintains the advantage of a basic matrix arbiter and also possesses the additional feature of fault-tolerant traffic awareness. These features for a hybrid arbiter are achieved with a 19% increase in throughput, a 1.5% decrease in delay and a 19% area increase in comparison to a conventional matrix arbiter.

Originality/value

This paper proposes a traffic-aware mechanism that increases the throughput of an arbiter unit with some area trade-off. The key feature of this hybrid arbiter is that it can assign priorities to the requesting ports based upon the real-time traffic requirements of each port. As a result of this, the arbiter is dynamically able to make arbitration decisions. Now because buffer information is valuable in winning the priority, the presence of a fault-tolerant policy ensures that none of the priority is assigned falsely to a requesting port. By this, wastage of arbitration cycles is avoided and an increase in throughput is also achieved.

Article
Publication date: 1 March 2013

Yu Tian, Yang Lv and Ling Tong

The purpose of this paper is to present one type of the architecture for wireless sensor network and to discuss in detail the hardware design of the sink node which can be…

Abstract

Purpose

The purpose of this paper is to present one type of the architecture for wireless sensor network and to discuss in detail the hardware design of the sink node which can be responsible for transmission data or instructions between sensor nodes and data. Finally, an experiment based on wireless sensor network has proved that the design of sink node is applicable and reliable in monitoring environmental elements such as temperature, humidity, etc.

Design/methodology/approach

A design for the sink node is presented which constants three parts: the power module, the storage/display module and the communication module. Zigbee, GPRS and Ethernet techniques are used on ARM7 microcontroller. The sink node is capable of bridging the user's terminal with sensor nodes for information transmission.

Findings

In this paper, a new method of the power management based on wireless sensor network is proposed to conserve energy. The antenna height is proven to be an important factor to the communicating among nodes. Finally, the paper proposes regular patterns of the deployment for sensor nodes based on the communication range and the sampling range.

Originality/value

The experiment for providing real‐time data on environment monitoring parameters indicates that the system is efficient. The authors believe that the idea and the design presented in the paper may help the research and application of wireless sensor network.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 1997

Martin H. George

Suggests that classical Fourier‐based methods are proving inadequate for the smart sensor concept. Presents a new approach labelled TESPAR (time encoded signal processing and…

283

Abstract

Suggests that classical Fourier‐based methods are proving inadequate for the smart sensor concept. Presents a new approach labelled TESPAR (time encoded signal processing and recognition). Explains the nature of the process and outlines its performance advantages over conventional Fourier‐based methods.

Details

Sensor Review, vol. 17 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 20000