Search results

1 – 2 of 2
Article
Publication date: 12 June 2017

Vaithiyanathan Dhandapani

Adders play a vital role in almost all digital designs, as all four arithmetic operations can be confined within addition. Hence, area and power optimization of the adders will…

Abstract

Purpose

Adders play a vital role in almost all digital designs, as all four arithmetic operations can be confined within addition. Hence, area and power optimization of the adders will result in overall circuit optimization. Being the fastest adder, the carry select adder (CSLA) gains higher importance among the different adder styles. However, it suffers from the drawback of increased power and area. The implementation of CSLA in digital circuits requires lots of study for optimization. Hence, to overcome this problem, various improvements were made to the CSLA structure to reduce area and, consequently, reduce power. Among these, modified CSLAs show a significant improvement, as they utilize a binary excess-1 code (BEC) to replace the add-one circuit.

Design/methodology/approach

This paper presents further enhancement in the modified CSLA by proposing a decision-based CSLA, which activates BEC on demand. This leads to reduced switching activity. The performance of the proposal is done by analyzing and comparing it with different adders. The comparison is done on the basis of three performance parameters: area, speed and power consumption. This is done by implementing the architecture on Xilinx Virtex5 XC5VLX30 in Verilog environment and is synthesized using Cadence® RTL Compiler® using TSMC 180-nm CMOS cell library.

Findings

Optimization of power, area and increasing the speed of operation are the three main areas of research in very-large-scale integration (VLSI) design for portable devices. As adders are the most fundamental units for any VLSI design, optimization at the adder level has a huge impact on the overall circuit. The modified CSLA has a BEC which continuously switches irrespective of the previous carry bit generated. The unwanted switching results in excess power consumption while also introducing additional delay. Hence, the author has proposed a decider circuit to avoid this excess switching activity. This allows switching of the BEC only when a previous carry is generated. The modified CSLA is based on the ripple carry adder, while the decider-based CSLA utilizes a carry look-ahead adder. This makes a decider-based CSLA faster while utilizing less area and power consumption when compared to the modified CSLA.

Originality/value

The efficiency of the proposed decider-based CSLA has been verified using Cadence RTL Compiler using TSMC 180-nm CMOS cell library and has been found to have 17 per cent power and 11.57 per cent area optimization when compared to the modified CSLA, while maintaining operating frequency.

Details

World Journal of Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 February 2021

B.N. Mohan Kumar and H.G. Rangaraju

Finite impulse response (FIR) digital filters are a general element in several digital signal processing (DSP) systems. In VLSI platform, FIR is a developing filter because the…

Abstract

Purpose

Finite impulse response (FIR) digital filters are a general element in several digital signal processing (DSP) systems. In VLSI platform, FIR is a developing filter because the complexity of design grows with the length of the FIR filter and also it has less latency. Generally, the FIR filter is designed dominated by the multiplier and adder. The conventional FIR filters occupy more area because of several numbers of adders and multipliers for filter designs.

Design/methodology/approach

To overcome this issue, the Vedic Multiplier (VM) and Moore-based LoopBack Adder (MLBA) approach-based optimal FIR filter were designed in this research. Normally, the coefficient has been generated manually, which performs the FIR filter operation. So, the coefficient was generated from the MATLAB filter design and analysis tool. All pass coefficient was introduced in this research, which performs the processing element (PE). The VM approach was utilized in the PE to multiply the filter inputs and coefficients. This research employs the Moore-based LBA (MLBA) in the accumulator for the adding output of the PE. An MLBA approach is a significantly reduced area and increases speed by applying a looping transform function. Here, the proposed method is called a VM-MLBA-FIR filter. In this research, the FIR filter was done in Field Programmable Gate Array (FPGA) Xilinx by using Verilog code on various Virtex devices.

Findings

The experiment results showed that VM-MLBA-FIR filter reduced 26.88% of device utilization and 0.32 W of minimum power consumption compared to the existing PSA-FIR filter.

Originality/value

The experiment results showed that VM-MLBA-FIR filter reduced 26.88% of device utilization and 0.32 W of minimum power consumption compared to the existing PSA-FIR filter.

Details

International Journal of Intelligent Unmanned Systems, vol. 10 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

1 – 2 of 2