Search results

1 – 10 of over 1000
Article
Publication date: 31 May 2022

Arunangshu Mukhopadhyay and Vivek Prasad Shaw

In recent times, stretch denim garments have become very popular amongst consumers as the garment is able to provide body fit and body comfort at the same time. The purpose of…

Abstract

Purpose

In recent times, stretch denim garments have become very popular amongst consumers as the garment is able to provide body fit and body comfort at the same time. The purpose of this study is to investigate the effect of abrasion on the change in surface appearance, mass loss and ultimate tensile properties of the stretch denim fabric in different directions (warp, weft and biased).

Design/methodology/approach

After abrading the fabrics in three different directions (warp, weft and biased), the loss in ultimate tensile properties, mass loss and surface appearance has been investigated in the respective directions of abrasion (warp, weft and biased). The study also encompasses the effect of different types of stretch yarn with varying levels of elastane content on such unidirectional abrasive damage.

Findings

It is seen that with the same level of abrasion cycles, the fabric's response in terms of mass loss and loss in ultimate tensile properties are different in different directions. The mass loss due to abrasion in biased direction is found to be minimum. The loss in ultimate tensile properties due to abrasion was highest in the weft direction. It is also found that the higher mass loss due to abrasion does not always result in a greater loss in ultimate tensile properties. The composition and the structure of the weft yarn significantly affected the extent of the mass loss and the loss in ultimate tensile properties during abrasive damage.

Originality/value

The impact of abrasive damage in terms of mass loss and loss in tensile strength along the different directions of denim fabric has not been explored till date. Abrasion of fabric can be done both in multi-direction (Lissajous motion) as well as in uni-direction (linear motion). The multidirectional abrasion provides a holistic or comprehensive idea of the fabric's response to the abrasive damage but does not take into consideration the fabric's anisotropic response to the abrasive damage. Most of the earlier investigation related to abrasive damage of denim fabric has been done in instruments where the motion of the abrader is multidirectional (Lissajous) in nature. For greater depth of understanding about the fabric performance under abrasive damage along the various direction (warp, weft and biased), unidirectional abrasion is conducted in this study.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 July 2006

Arunangshu Mukhopadhyay, Subrata Ghosh and Somes Bhaumik

This paper seeks to report an experimental investigation on the tearing and tensile strength behaviour of military khaki fabrics from grey to finished process.

1157

Abstract

Purpose

This paper seeks to report an experimental investigation on the tearing and tensile strength behaviour of military khaki fabrics from grey to finished process.

Design/methodology/approach

Uses three different types of military fabric (3 up 1 down twill), differing in type of constituent yarns (ring/rotor) in order to test their tearing and testing strength behaviour.

Findings

Tearing strength of fabric is found to be very much susceptible to change due to the process variation, while fabric tensile strength is relatively less sensitive. Ring spun yarn fabric shows higher tearing strength compared with rotor spun yarn fabric. However, the difference in their tearing strength reduces substantially as the process approaches towards the finished state. On the other hand, rotor spun yarn fabric exhibits higher tensile strength along the warp. Tearing strength along bias direction is in between warp and weft wise tearing strength; whereas tensile strength is lowest while tested along the bias direction. During the grey to finished process, tear strength falls at bleaching and dyeing, and particularly drops in strength is being more at the dyeing stage.

Originality/value

This study has investigated the tearing and tensile strength behaviour of military khaki fabrics from grey to finished state, developing understanding of the impact of different processes on the tearing strength, so that fabric of the required tear strength can be developed with process modification.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 12 May 2020

Reyhaneh Kamali, Yasaman Mesbah and Fatemeh Mousazadegan

The aim of the present study is to consider the influence of the tensile behavior of fabric and sewing thread on the seam appearance.

Abstract

Purpose

The aim of the present study is to consider the influence of the tensile behavior of fabric and sewing thread on the seam appearance.

Design/methodology/approach

In this study, the formation of seam puckering on two elastic and normal woven fabrics was explored. In order to prepare samples, various sewing threads were applied. Test specimens were sewn under five different thread tension levels. Then the appearance of samples was evaluated subjectively to determine their seam puckering grade before and after the laundering process.

Findings

The obtained outcomes of this study present that although sewing thread tension increment decreases the seam pucker ranking in the similar sewing condition, elastic fabrics have a greater seam pucker grade compared to the normal fabric due to the fabric extension and contraction during sewing and after sewing process, respectively. In addition, the elastic strain of the sewing thread is the key factor that determined sewing thread's tendency to make seam puckering. Moreover, the laundry process due to the relaxation of the sewing thread decreases the seam pucker grade.

Originality/value

The consistency of the tensile property of fabric and sewing thread is a crucial parameter in improving the seam appearance and obtaining a smooth seam.

Details

International Journal of Clothing Science and Technology, vol. 33 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 January 2020

Meng Deng, Miao Tian, Yunyi Wang and Min Wang

The purpose of this paper is to determine the effect of flash fire exposure on the mechanical properties of single-layer thermal protective clothing.

Abstract

Purpose

The purpose of this paper is to determine the effect of flash fire exposure on the mechanical properties of single-layer thermal protective clothing.

Design/methodology/approach

The full-scale flame manikin tests were performed to simulate flash fire exposure. Two typical fire-resistant fabrics were investigated. The manikin was divided into seven body parts and the specimens meeting the requirements of tensile and tear strength standards were sampled. Fabric thickness, mass per unit area, tensile strength and tear strength were measured and analyzed.

Findings

The results revealed the significant influence of heat flux on both of tensile and tear strength. However, the regression analysis indicated the low R2 of the liner models. When the tensile and tear strength retention were reorganized based on the body parts, both of the multiple linear regression models for tensile and tear strength showed higher R2 than the one-variable linear regressions. Furthermore, the R2 of the multiple linear regression model for tear strength retention was remarkably higher than that of the tensile strength.

Practical implications

The findings suggested that greater attention should be paid to the local part of human body and more factors such as the air gap should be considered in the future thermal aging of firefighters’ clothing studies.

Originality/value

The outcomes provided useful information to evaluate the mechanical properties of thermal protective clothing and predict its service life.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 November 2015

Mahmut Kayar, Suleyman Ilker Mistik and Deniz Inan

– The purpose of this paper is to investigate the factors effecting ultrasonic seam tensile properties.

Abstract

Purpose

The purpose of this paper is to investigate the factors effecting ultrasonic seam tensile properties.

Design/methodology/approach

In this study, 100 percent polypropylene and 100 percent polyester spunbond and meltblown nonwoven fabrics were sewn by using ultrasonic sewing machine with different rollers which have two, three and four rows. Seam tensile properties of the sewn nonwoven fabrics were investigated. Four-Level Nested Anova Design was applied to the data by using Minitab 15 software program.

Findings

Higher seam strength values were obtained by using four rows roller, PP fiber, spunbond fabric and 50 g/m2 fabric area density for all nonwoven fabrics. Statistical significance was found between fabric area density, roller rows and seam tensile strength properties and between fabric type, roller rows and seam elongation at break values.

Originality/value

When the authors look at the studies related to ultrasonic sewing, several researchers studied on welding parameters of ultrasonic sewing but very limited studies were performed on assembling of nonwoven fabrics with ultrasonic sewing. Therefore effect of production methods of nonwoven fabrics on the properties of ultrasonic sewing such as seam strength and elongation at break should be investigated.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 6 March 2007

Panagiotis N. Koustoumpardis, John S. Fourkiotis and Nikos A. Aspragathos

The paper aims to propose an approach to intelligent evaluation of the tensile test. A robotized system is used that performs the fabrics tensile test and estimates the…

Abstract

Purpose

The paper aims to propose an approach to intelligent evaluation of the tensile test. A robotized system is used that performs the fabrics tensile test and estimates the extensibility of the samples using a feed‐forward neural network while trying to imitate the human expert estimation.

Design/methodology/approach

The specifications of the tensile test are derived by an extensive observation of the respective experts' estimation performance. The fabric sample size and the experimental conditions are specified. Linguistic values of the term “fabric extensibility” are extracted through a knowledge acquisition process. The tensile test is performed by a robot manipulator with a simple gripper and the experimental measurements (force, strain) are fed online into a neural network. The network is trained according to the extensibility estimations of the experts. The trained network is tested in estimating unknown fabric's extensibility.

Findings

The results demonstrate that the system is capable of estimating the extensibility of new fabrics.

Originality/value

This work can be integrated in the robotized sewing process with intelligent control where the fabric's extensibility in terms of linguistic values is necessary. The proposed system initiates a new approach, in which the fabric properties are expressed and used in a way that will facilitate the introduction of the artificial intelligence methods into the clothing industry.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 April 2018

Georgios V. Seretis, Ioannis D. Theodorakopoulos, Dimitrios E. Manolakos and Christopher G. Provatidis

Para-aramid fabrics see service in a great variety of applications, such as heavy weight lifting applications, penetration protective multilayer panels, etc. It is, therefore…

Abstract

Purpose

Para-aramid fabrics see service in a great variety of applications, such as heavy weight lifting applications, penetration protective multilayer panels, etc. It is, therefore, increasingly important to understand the strain rate range at which the fabric has optimum mechanical properties. Although this is a field that has not been studied before, it is of great significance since it allows for the determination of the fabric’s layer location within the multilayered structure which offers maximum overall performance. The paper aims to discuss this issue.

Design/methodology/approach

Rectangular strips of PARAX 300 S8 woven para-aramid fabric underwent uniaxial tensile tests at various extension rates. The angle between two fibers at the center of each specimen was measured after the fabrics were elongated at different tensile extensions. This recovery angle was determined by visual analysis of the test video recordings after specimen unloading. Based on this, the recovery of the weaving form after unloading was also estimated for each tensile extension. A recovery degree based deformation characterization of the sections of a typical load/extension curve has been introduced.

Findings

The fabric does not appear to be strain rate sensitive for a strain rate range of 0.03 s-1 to 0.53 s-1, and its load/extension characteristics are generally not affected by the extension rate. However, break load and maximum elongation values appear reduced at actuator velocity of 2,400 mm/min and enhanced at 3,600 mm/min. Finally, the effect of extension rate on the different deformation zones of the material is reported and discussed.

Originality/value

The current research work offers a novel approach for the investigation of non-standard response of woven para-aramid fabrics when subjected to tensile loading under various strain rates. Additionally, a new approach is introduced to explain in detail the deformation zones based on the recovery degree of the fiber orientation angle after unloading.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 19 May 2023

Soliyana Gebeyaw, Kura Alemayehu Beyene, Eradu Seid, Zemzem Mustofa and Gideon K. Rotich

This study aims to manufacture alternative window shutters using waste cotton fabrics by stiffening using polyvinyl acetate (PVA) with vinyl acrylic binder solutions.

Abstract

Purpose

This study aims to manufacture alternative window shutters using waste cotton fabrics by stiffening using polyvinyl acetate (PVA) with vinyl acrylic binder solutions.

Design/methodology/approach

The manufactured fabrics were evaluated for their tensile strength, drapeability, bending length by weight and color fastness to light. And finally, an analysis of variance was done for each parameter.

Findings

As the percent of PVA with a vinyl acrylic solution and the number of layers increased, the tensile strength, drape coefficient (percent), bending length (cm), and color fastness to light increased in both directions. The percent of PVA with a vinyl acrylic solution and the number of layers are statistically significant for each response such as tensile strength, drape coefficient (percent), bending length (cm), color fastness to light and water repellency at a 95% confidence interval. Tensile strength, drape coefficient (%) and bending length (cm) are always greater in the warp direction than in the weft direction. The tensile strength, drape coefficient (percent), bending length (cm) and color fastness to light of treated fabrics samples are greater than those of the untreated fabrics.

Originality/value

The factory waste fabrics can be recycled into window shutters which will provide the cheaper raw material for window shutter manufacturers.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 31 May 2013

Yongrong Wang and Peihua Zhang

This study aims to clarify the key factors among physical‐mechanical properties of fabrics in relation to the dynamic pressure performance of compression garment.

Abstract

Purpose

This study aims to clarify the key factors among physical‐mechanical properties of fabrics in relation to the dynamic pressure performance of compression garment.

Design/methodology/approach

The physical‐mechanical properties of 16 different fabrics were measured using a KESF standard evaluation system and INSTRON tensile tester, and the garment pressure was measured by dynamic pressure measuring system. Grey correlation analysis is used to determine the correlation degree of fabric physical‐mechanical properties and dynamic pressure magnitude.

Findings

The mechanical behaviors (e.g. tensile, shearing, and bending) and physical characteristics are different in elastic fabrics with varied content of elastic fiber, kinds of yarn, et al. Grey correlation analysis is a valid method to analyze the indices of a system, quantize them and put them in order. All the degrees of Grey correlation are more than 0.6. The degree of grey correlation between tensile force (F), shearing rigidity (G) and bending rigidity (B) are higher than others, hence it is conducted that these would significantly effect on garment pressure. The quantitative regression equations between pressure magnitude at extension of 50 percent and the individual key parameters (mean values in wale and course directions) of tested samples are illustrated.

Research limitations/implications

The other parameters (e.g. fabric structure, yarn fineness, and pre‐tension, et al.) should be taken into account. Further, an integrative mathematic model would be established, which could predict the garment pressure directly from the physical‐mechanical properties of fabric.

Originality/value

The present study indicates that pressure magnitude of elastic fabric is an integrative action performed by physical‐mechanical properties. The developed illustrative equations and method offer a rational and practical tool for assessing pressure functional performance of elastic fabric in the stages of design and product development.

Details

International Journal of Clothing Science and Technology, vol. 25 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 July 2020

Desalegn Atalie and Gideon Kipchirchir Rotich

For cloths having direct contact with the skin, comfort properties are a priority than the physical and mechanical properties. Innerwear clothes should induce pleasant feelings…

Abstract

Purpose

For cloths having direct contact with the skin, comfort properties are a priority than the physical and mechanical properties. Innerwear clothes should induce pleasant feelings because they have a direct influence on human psychological satisfaction, health and work efficiency. The purpose of this study is to investigate the impact of cotton fiber parameters on the sensorial comfort of woven fabrics.

Design/methodology/approach

Four types of cotton fiber with different fineness, mean length, uniformity index, short fiber content, strength and elongation were used to develop yarns used to weave fabric samples. Kawabata evaluation system (KES) was used to analyze the fabrics’ sensorial comfort.

Findings

Results showed that cotton fiber parameters have a significant effect on surface friction and roughness properties. Low stress tensile, tensile resilience and tensile strain properties were affected by fiber micronaire, mean length, uniformity index, short fiber content, fiber strength and elongation. However, fabric shear, bending and compression properties were least dependent on fiber parameters. The correlation of the dependent variable and the independent variable was also statistically analyzed and reported. From the results, it was shown that cotton fiber parameters play a significant role in woven fabrics’ sensorial comfort.

Originality/value

The cloths that are in contact with the skin can be developed using the results of these studies to feel pleasant. This will, in turn, have a direct effect on the customer's psychological satisfaction, health and work performance.

1 – 10 of over 1000