Search results

1 – 10 of 21
Article
Publication date: 30 May 2023

Rawid Banchuin

The purpose of this paper is to originally present the generic analytical models of memelement and inverse memelement with time-dependent memory effect.

Abstract

Purpose

The purpose of this paper is to originally present the generic analytical models of memelement and inverse memelement with time-dependent memory effect.

Design/methodology/approach

The variable order forward Grünwald–Letnikov fractional derivative and the memristor and inverse memristor models proposed by Fouda et al. have been adopted as the basis. Both analytical and numerical studies have been conducted. The applications to the candidate practical memristor and inverse memelements have also been presented.

Findings

The generic analytical models of memelement and inverse memelement with time-dependent memory effect, the simplified ones for DC and AC signal-based analyses and the equations of crucial parameters have been derived. Besides the well-known opposite relationships with frequency, the Lissajous patterns of memelement and inverse memelement also use the opposite relationships with the time. The proposed models can be well applied to the practical elements.

Originality/value

To the best of the authors’ knowledge, for the first time, the models’ memelement and inverse memelement with time-dependent memory effect have been presented. A new contrast between these elements has been discovered. The resulting models are applicable to the practical elements.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 31 May 2022

Arunangshu Mukhopadhyay and Vivek Prasad Shaw

In recent times, stretch denim garments have become very popular amongst consumers as the garment is able to provide body fit and body comfort at the same time. The purpose of…

Abstract

Purpose

In recent times, stretch denim garments have become very popular amongst consumers as the garment is able to provide body fit and body comfort at the same time. The purpose of this study is to investigate the effect of abrasion on the change in surface appearance, mass loss and ultimate tensile properties of the stretch denim fabric in different directions (warp, weft and biased).

Design/methodology/approach

After abrading the fabrics in three different directions (warp, weft and biased), the loss in ultimate tensile properties, mass loss and surface appearance has been investigated in the respective directions of abrasion (warp, weft and biased). The study also encompasses the effect of different types of stretch yarn with varying levels of elastane content on such unidirectional abrasive damage.

Findings

It is seen that with the same level of abrasion cycles, the fabric's response in terms of mass loss and loss in ultimate tensile properties are different in different directions. The mass loss due to abrasion in biased direction is found to be minimum. The loss in ultimate tensile properties due to abrasion was highest in the weft direction. It is also found that the higher mass loss due to abrasion does not always result in a greater loss in ultimate tensile properties. The composition and the structure of the weft yarn significantly affected the extent of the mass loss and the loss in ultimate tensile properties during abrasive damage.

Originality/value

The impact of abrasive damage in terms of mass loss and loss in tensile strength along the different directions of denim fabric has not been explored till date. Abrasion of fabric can be done both in multi-direction (Lissajous motion) as well as in uni-direction (linear motion). The multidirectional abrasion provides a holistic or comprehensive idea of the fabric's response to the abrasive damage but does not take into consideration the fabric's anisotropic response to the abrasive damage. Most of the earlier investigation related to abrasive damage of denim fabric has been done in instruments where the motion of the abrader is multidirectional (Lissajous) in nature. For greater depth of understanding about the fabric performance under abrasive damage along the various direction (warp, weft and biased), unidirectional abrasion is conducted in this study.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 October 2022

Xiongmin Tang, Tianhong Jiang, Weizheng Chen, ZhiHong Lin, Zexin Zhou, Chen Yongquan and Miao Zhang

How to use a simple and classical topology to provide a high-efficiency excitation voltage for dielectric barrier discharge (DBD) loads is one of the primary problems to be solved…

Abstract

Purpose

How to use a simple and classical topology to provide a high-efficiency excitation voltage for dielectric barrier discharge (DBD) loads is one of the primary problems to be solved for DBD application fields.

Design/methodology/approach

To address the issue, a set of modes that can generate a high-efficiency pulse excitation voltage in a full-bridge inverter are adopted. With the set of modes, the unique equivalent circuit of DBD loads and the parasitic parameter of the step-up transformer can be fully used. Based on the set of modes, a control strategy for the full-bridge inverter is designed. To test the performance of the power supply, a simulation model is established and an experimental prototype is made with a DBD excimer lamp.

Findings

The simulation and experimental results show that not only a high-efficiency excitation voltage can be generated for the DBD load, but also the soft switching of all power switch is realized. Besides this, with the set of modes and the proposed control strategy, the inverter can operate in a high frequency. Compared with other types of power supplies, the power supply used in the paper can fully take advantage of the potential of the excimer lamp at the same input power.

Originality/value

This work considers that how to use a simple and classical topology to provide a high-efficiency excitation voltage for DBD loads is one of the primary problems to be solved for DBD application fields.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 13 June 2019

Wei Xia, Lingwen Kong, Jiahuan Zhang, Hui Hao, Yiping Wang, Xiaoqi Ni, Ming Wang and Dongmei Guo

The purpose of this study aims to modify a self-mixing laser mouse as an extremely cost-effective displacement sensor to measure the mechanical oscillation of a commercial shaker…

Abstract

Purpose

The purpose of this study aims to modify a self-mixing laser mouse as an extremely cost-effective displacement sensor to measure the mechanical oscillation of a commercial shaker and a nano-positioning stage.

Design/methodology/approach

This kind of laser mouse, mostly consisting of a pair of vertical cavity surface emitting lasers, two photodiodes and an integrated signal processing unit, is capable of directly giving the x-axis and y-axis components of the measured vibrating displacement. Based on the laser self-mixing interference, the velocity of the object is coded into the Doppler frequency shift of the feedback light, which allows accurate determination of the vibration of the object.

Findings

A commercial shaker has been used to provide standard harmonic oscillation to test the displacement sensor. Within a vibrating frequency range of 110 Hz, the experimental results show that the micrometer scale resolution has been achieved at the velocity of up to 2 m/s, which is much improved compared with the image-based optical mouse. Furthermore, the measurements of the two dimensional displacement of a nano-positioning stage are performed as well. The minimum measurable velocity limit for this sensor has been discussed in detail, and the relative measurement error can be greatly reduced by appropriate selection of the modulation frequency of the triangular injection current.

Originality/value

These results demonstrate the feasibility of this device for the industrial vibration sensing applications.

Details

Sensor Review, vol. 39 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 November 2021

Laila M. Elattar, Sawsan S. Darwish, Usama M. Rashed, Maha Ahmed Ali and Shaimaa M. Eldeighdye

This paper aims at examining the potentiality of using Hibiscus sabdariffa L. calyces’ (Hs) aqueous extract to remove soot stains from the surface of fire-damaged silver gelatin…

Abstract

Purpose

This paper aims at examining the potentiality of using Hibiscus sabdariffa L. calyces’ (Hs) aqueous extract to remove soot stains from the surface of fire-damaged silver gelatin prints. It further studies the cleaning efficiency and impact of both a contact method and a noncontact method with argon dielectric barrier discharge plasma (DBD Ar. plasma) on the different properties of silver gelatin prints. Accordingly, it prompts using economic, eco-friendly materials and methods in the photograph conservation field.

Design/methodology/approach

To achieve the aims of this paper, four silver gelatin prints were stained with soot and treated with the Hs aqueous extract as a contact method and DBD Ar. plasma combined with the aqueous extract as a noncontact method. The assessment was carried out using digital microscopy, atomic force microscopy and spectrophotometer to study the efficiency of the tested treatments and their impact on the surface of the photographs. Fourier transform infrared was used to monitor the state of the binder after cleaning. Furthermore, the pH and the mechanical properties were measured.

Findings

The contact method resulted in lower concentrations of Hs extract that efficiently cleaned the surface without causing any stains or damage to the treated photographs. The noncontact method (plasma with an aqueous extract) proved to be less effective in cleaning and made the binder more susceptible to deterioration.

Originality/value

This paper reveals the success of Hs aqueous extract in cleaning soot on vulnerable photographs' surfaces.

Details

Pigment & Resin Technology, vol. 52 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 May 2020

Poornima Sridharan and Pugazhendhi Sugumaran C.

An annual substation equipment failure report says 3/7 capacitive voltage transformer (CVT) got damaged because of ferroresonance overvoltage. The conventional mitigation circuit…

Abstract

Purpose

An annual substation equipment failure report says 3/7 capacitive voltage transformer (CVT) got damaged because of ferroresonance overvoltage. The conventional mitigation circuit fails to protect the transformer as the overvoltage may fall in the range between 2 and 4 per unit. It is necessary to develop a device to suppress the overvoltage as well as overcurrent of the CVT. This study aims to propose the suitability of memristor emulator as a mitigation circuit for ferroresonance.

Design/methodology/approach

The literature implies that a nonlinear circuit can protect the transformer against ferroresonance. An attempt is made with a memristor emulator using Operational Amplifier (OPAMP) for the mitigation of ferroresonance in a prototype transformer. The circuit is simulated using PSpice and validated for its ideal characteristics using hardware implementation. The nonlinear memductance is designed which is required to mitigate the ferroresonance. The mitigation performance has been compared with conventional method along with fast Fourier transform (FFT) analysis.

Findings

While the linear resistor recovers the secondary voltage by 74.1%, the memristor emulator does it by 82.05% during ferroresonance. Also, the total harmonic distortion (THD) of ferroresonance signal found to be 22.06% got improved as 2.56% using memristor emulator.

Research limitations/implications

The suitability of memristor emulator as a mitigation circuit for ferroresonance is proposed in this paper. As ferroresonance occurs in instrument transformers which have extra high voltage (EHV) rated primary windings and (110 V/[110 V/1.732]) rated secondary windings, the mitigation device is proposed to be connected as a nonlinear load across the secondary windings of the transformer. This paper discusses the preliminary work of ferroresonance mitigation in a prototype transformer. The mitigation circuit may have memristor or meminductor for ferroresonance mitigation when they are commercially available in future.

Practical implications

The electronic component-based memristor emulator may not work at 110 V practically as they may be rated at low power. Hence, chemical component-based memristor emulator was developed to do the same. The authors like to clarify that the memristor will be a solution for ferroresonance in future not the memristor emulator circuit.

Social implications

With the real form of memristor, the transistor world will be replaced by it and may have a revolution in the field of electronics, VLSI, etc. This contribution attempts to project the use of memristor in a smaller scale in high-voltage engineering.

Originality/value

The electronic component-based memristor emulator is proposed as a mitigation circuit for ferroresonance. The hypothesis has been verified successfully in a prototype transformer. Testing circuit of memristor emulator involves transformer, practically. The mitigation performance has been compared with conventional method technically and justified with FFT analysis.

Details

Circuit World, vol. 47 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 5 May 2023

Chung-Ping Chang, Song-Fu Hong and Tzu-Guang Chen

In this investigation, a linear encoder system based on the ultrasonic transducer has been proposed. Ultrasonic transducers are usually designed for distance measurements, such as…

Abstract

Purpose

In this investigation, a linear encoder system based on the ultrasonic transducer has been proposed. Ultrasonic transducers are usually designed for distance measurements, such as the time of flight method and sonar system. These applications are defined as discrete-length measurement technologies. The purpose of this study is to develop a continuous displacement measurement system using ultrasonic transducers.

Design/methodology/approach

A modified signal processing based on heterodyne signaling is implemented in this system. In the proposed signal processing, there is an automatic gain control module, a phase-shifting module, a phase detection module, an interpolation module and especially a frequency multiplication module, which can enhance the resolution and reduce the interpolation error simultaneously.

Findings

The proposed system can generate the encoding signals and is compatible with most motion control systems. For the experimental result, the maximum measurement error and standard deviation are about −0.027 and 0.048 mm, respectively. It shows that the proposed encoder system has the potential for displacement measurement tasks.

Originality/value

This study reveals an ultrasonic linear encoder that is capable of generating an incremental encoding signal, accompanied by a corresponding signal processing methodology. In contrast to the conventional heterodyne signal processing approach, the proposed multiplication method effectively reduces the interpolation error that arises because of multiple reflections.

Details

Sensor Review, vol. 43 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 August 2021

Hamed Fasihi Pour Parizi, Saeed Seyedtabaii and Mahdi Akhbari

The purpose of this study is to develop an algorithm to accurately detect faults in series capacitor compensated (SCC) power transmission lines. The line fault must be…

Abstract

Purpose

The purpose of this study is to develop an algorithm to accurately detect faults in series capacitor compensated (SCC) power transmission lines. The line fault must be distinguished from stable power swing, compensating unit malfunction and defects on other lines sharing the same bus (external faults).

Design/methodology/approach

In this regard, an effective fault feature extractor based on the cumulative sum (CUSUM) of the amplified second harmonic of the phase currents is suggested. The features are then applied to an artificial neural network for classification. No-fault cases include stable power swing and several disturbances. Due to the independent analysis of each phase, faulty phase detection is also a by-product.

Findings

Various fault scenarios are defined, and the algorithm success rate is compared with some newly published methods. Extensive simulations performed over a single-machine infinite bus, a 3-machine, 9-bus and the large-scale New England IEEE 39-Bus networks all indicate that the proposed algorithm can trip the faulty line more quickly and accurately than the contestant algorithms.

Originality/value

Suggestion of a new algorithm based on the CUSUM of the amplified second harmonic of the phase current for the fault feature extraction that is able to isolate the transmission line internal faults from stable poser swing, line compensating unit malfunction and faults on the adjacent lines connected to the same bus.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 4 September 2009

69

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 October 1959

J.F. Harriman

UPON completion of the design for the engine mounting it is most desirable that some ground testing should be carried out before the mounting is flight tested. These tests will…

Abstract

UPON completion of the design for the engine mounting it is most desirable that some ground testing should be carried out before the mounting is flight tested. These tests will provide information on the mounting resonances and modes of vibration, deflexions of the engine and mounting under load and they may also be extended to include proof and ultimate load tests for various critical flight cases. The degree of vibration isolation achieved can also be estimated bearing in mind the differences in suspension on the test beds compared with the actual aeroplane and any changes found to be necessary can be incorporated and tested more readily on the ground than in the air.

Details

Aircraft Engineering and Aerospace Technology, vol. 31 no. 10
Type: Research Article
ISSN: 0002-2667

1 – 10 of 21