Search results

1 – 10 of 865
Article
Publication date: 6 November 2017

Wei Ding, Kaimei Peng, Tao Zou, Ruonan Wang, Jinshan Guo, Wei Ping Tu, Chao Liu and Jianqing Hu

The purpose of this paper is to develop non-leaching and eco-friendly antimicrobial waterborne polyacrylates with excellent antibacterial properties by grafting antibacterial…

Abstract

Purpose

The purpose of this paper is to develop non-leaching and eco-friendly antimicrobial waterborne polyacrylates with excellent antibacterial properties by grafting antibacterial vinyl monomer, glycidyl methacrylate (GMA) modified polyhexamethylene guanidine hydrochloride (PHMG).

Design/methodology/approach

PHMG of different molecular weights were modified by GMA to synthesize antibacterial vinyl monomer, GMA-modified PHMG (GPHMG). Different content and molecular weights of GPHMG were used to synthesize antimicrobial waterborne polyacrylates through emulsion polymerization.

Findings

The addition of GPHMG gained by modifying PHMG showed little influence on thermal stability of the films, but decreased the glass transition temperature(Tg). Meanwhile, the tensile strength decreased, while the breaking elongation increased. The antibacterial properties of the antibacterial films with different GPHMG contents were studied, when GPHMG content was around 0.9 Wt.%, antibacterial films showed excellent antibacterial activity (antibacterial rate >= 99.99 per cent). When weight content of GPHMG in the films remained constant, antibacterial property of films increased first and then decreased with the increase of molecular weight of GPHMG. The structural antibacterial polymer film had more perdurable antibacterial activity than the blended one.

Research limitations/implications

The grafting efficiency of GPHMG to antimicrobial waterborne polyacrylates could be further improved.

Practical implications

Antimicrobial waterborne polyacrylates with excellent antibacterial properties can be used to antibacterial coating and adhesive.

Originality/value

The antibacterial properties of films with different molecular weight of GPHMG were studied, and the durability and stability of antibacterial properties between structural antimicrobial films and blended antimicrobial films were also investigated by ring-diffusion method.

Details

Pigment & Resin Technology, vol. 46 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 November 2011

E.M. El-khatib and N.F. Ali

Glycidyl triethyl ammonium chloride (GTEAC) was used to chemically modify the primary amine groups (-NH2) in wool fabrics to acquire new properties. The properties of treated wool…

Abstract

Glycidyl triethyl ammonium chloride (GTEAC) was used to chemically modify the primary amine groups (-NH2) in wool fabrics to acquire new properties. The properties of treated wool fabrics were studied such as wettability, whiteness, nitrogen content, dyeability, fastness and antimicrobial properties. Modified cationic wool fabrics enhanced hydrophilicity, dyeing properties and biocidal activity. The treatment led to improvement in dyeability, fastness, wettability, whiteness and antimicrobial activity. Dyeing was performed with natural dye obtained from Tumeric at 85°C. Curcumin is an active ingredient in turmeric (Curcuma longa L.). Curcumin, a common natural dye used for fabrics and food colorations, was used as an antimicrobial finish due to its bactericidal properties on dyed textiles. A common dyeing process could provide wool fabrics with color as well as antimicrobial properties. The antimicrobial activity of wool fabrics treated with (GTEAC) and dyed with curcumin was studied. The durability of antimicrobial activity of curcumin dyed wool fabrics to laundering was also examined.

Details

Research Journal of Textile and Apparel, vol. 15 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 28 May 2021

Anand Dixit, Kunal Wazarkar and Anagha S. Sabnis

Epoxy acrylate which is commercially utilized for UV curable coatings although has excellent adhesion, flexibility, hardness and chemical resistance, they lack in antimicrobial

Abstract

Purpose

Epoxy acrylate which is commercially utilized for UV curable coatings although has excellent adhesion, flexibility, hardness and chemical resistance, they lack in antimicrobial properties. Citric acid (CA) is economical as well as a bio-based compound which possess an antimicrobial activity. So, the purpose of this research investigation is the preparation of CA-based oligomer which can be further incorporated with epoxy acrylate and tri (propylene glycol) Diacrylate (TPGDA) to form uv curable coating and the study of its antimicrobial property.

Design/methodology/approach

A UV-curable unsaturated oligomer (CUV) was synthesized from CA and glycidyl methacrylate (GMA). The chemical structure of CUV was confirmed by FTIR, 1H NMR, GPC, hydroxyl value, acid value and iodine value. Further, CUV was assimilated as an antimicrobial as well as crosslinking agent to copolymerize with epoxy acrylate oligomer and a series of UV-cured antimicrobial coatings were concocted by employing UV-curing machine. The consequence of varying the fraction of CUV on the mechanical, chemical, thermal and antimicrobial properties of UV-cured wood coatings was explored.

Findings

Results exhibited good mechanical, chemical and thermal properties. In addition, it was perceived that the zone of inhibition against S. aureus got enlarged with increasing content of CUV in the coating formulation.

Originality/value

The synthesized bio-based CUV reveals an extensive potential to ameliorate the antimicrobial properties of UV-curable coatings.

Details

Pigment & Resin Technology, vol. 50 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 June 2021

Samuel Furka, Daniel Furka, Nitin Chandra Teja Chandra Teja Dadi, Patrik Palacka, Dominika Hromníková, Julio Ariel Dueñas Santana, Javier Díaz Pineda, Saul Dueñas Casas and Juraj Bujdák

This study aims to describe the preparation of antimicrobial material usable in 3D printing of medical devices. Despite the wealth of technological progress at the time of the…

Abstract

Purpose

This study aims to describe the preparation of antimicrobial material usable in 3D printing of medical devices. Despite the wealth of technological progress at the time of the crisis caused by SARS-CoV-2 virus: Virus that causes current Pandemic situation (COVID-19), the global population had long been exposed beforehand to an acute absence of essential medical devices. As a response, a new type of composite materials intended for rapid prototyping, based on layered silicate saponite (Sap), antimicrobial dye phloxine B (PhB) and thermoplastics, has been recently developed.

Design/methodology/approach

Sap was modified with a cationic surfactant and subsequently functionalized with PhB. The hybrid material in powder form was then grounded with polyethylene terephthalate-glycol (PETG) or polylactic acid (PLA) in a precisely defined weight ratio and extruded into printing filaments. The stability and level of cytotoxicity of these materials in various physiological environments simulating the human body have been studied. The applicability of these materials in bacteria and a yeast-infected environment was evaluated.

Findings

Ideal content of the hybrid material, with respect to thermoplastic, was 15 weight %. Optimal printing temperature and speed, with respect to maintaining antimicrobial activity of the prepared materials, were T = 215°C at 50 mm/s for PETG/SapPhB and T = 230°C at 40 mm/s for PLA/SapPhB. 3 D-printed air filters made of these materials could keep inner air flow at 63.5% and 76.8% of the original value for the PLA/SapPhB and PETG/SapPhB, respectively, whereas the same components made without PhB had a 100% reduction of airflow.

Practical implications

The designed materials can be used for rapid prototyping of medical devices.

Originality/value

The new materials have been immediately used in the construction of an emergency lung ventilator, Q-vent, which has been used in different countries during the COVID-19 crisis.

Details

Rapid Prototyping Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 January 2014

Emrah Çakmakçi, Ozan Deveoglu, Ahmed Muhammed, Ali Fouad, Emine Torgan and Recep Karadag

– In this study, it was aimed to investigate the antibacterial properties of natural pigments prepared from Thymus serpyllum.

Abstract

Purpose

In this study, it was aimed to investigate the antibacterial properties of natural pigments prepared from Thymus serpyllum.

Design/methodology/approach

Al (III), Fe (II), Sn (II) and Cu (II) complexed natural pigments were obtained by using a precipitation method and the main constituents in the pigments were identified with HPLC-DAD. Also FTIR analysis was performed for further structural characterization. Moreover, the thermal stability and thermal degradation properties of the pigments were analyzed by thermogravimetric analyses (TGA). The antimicrobial activity of the thyme plant-extracted pigments was evaluated by measuring the minimal inhibitory concentration.

Findings

Apigenin and luteolin flavones were detected as the main components of the natural dyes. Thermal degradation behaviour of the pigments was determined by means of TGA. All pigments showed high char yields and it was attributed to the high complexation between the metal and the ligand species. The antimicrobial activity of the thyme plant-extracted pigments was measured and it was found that all pigments had high antimicrobial activity. Aluminum-thymus pigments showed the highest antimicrobial efficiency among other pigments used in this study.

Originality/value

The obtained pigments have high antimicrobial activities, and therefore, they can be used for the production of antimicrobial textiles. Furthermore, Thymus-based natural pigments might have potential applications in coating, paint, plastic industries, etc.

Details

Pigment & Resin Technology, vol. 43 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 May 2022

H. Abd El-Wahab and Raafat A. El-Eisawy

This paper aims to prepare new modified alkyd resins and use it as an antimicrobial binder for surface coating applications.

Abstract

Purpose

This paper aims to prepare new modified alkyd resins and use it as an antimicrobial binder for surface coating applications.

Design/methodology/approach

Various modified alkyd resins were prepared by partial replacement of 3,6-dichloro benzo[b]thiophene-2-carbonyl bis-(2-hydroxy ethyl)-amide as a source of polyol with glycerol and confirmed by acid value, FT-IR, 1H-NMR. The modified alkyd resins were covering a wide range of oil lengths and hydroxyl content (0%, 10%, 20% and 30% excess-OH). The antimicrobial activity of the prepared alkyds was also investigated. The coatings of 60 ± 5 µm thickness were applied to the surface of glass panels and mild steel strips by means of a brush. Physico-mechanical tests, chemical resistance and antimicrobial activities were investigated.

Findings

The obtained results illustrate that the introduction of benzo[b]thiophene derivative as a modifier polyol within the resin structure improved the film performance and enhanced the physico-mechanical characteristics, chemical resistance and the antimicrobial activities.

Practical implications

The modified alkyd resins can be employed as antimicrobial binders in paint compositions for a variety of surfaces, particularly those that are susceptible to a high number of bacteria.

Originality/value

Modified alkyd resins based on antimicrobial heterocyclic compounds have the potential to be promising in the manufacturing of antimicrobial coatings and development of paints, allowing them to function to prevent the spread of microbial infection, which is exactly what the world requires at this time. Also, they can be applied in different substrates for industrial applications.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 February 2022

Mona Saied, Abeer Reffaee, Shimaa Hamieda, Salwa L. Abd- El- Messieh and Emad S. Shafik

This study aims to get rid of non-degradable polyvinyl chloride (PVC) waste as well as sunflower seed cake (SSC) waste by preparing eco-friendly composites from both in different…

Abstract

Purpose

This study aims to get rid of non-degradable polyvinyl chloride (PVC) waste as well as sunflower seed cake (SSC) waste by preparing eco-friendly composites from both in different proportions to reach good mechanical and insulating properties for antimicrobial and antistatic applications.

Design/methodology/approach

Eco-friendly composite films based on waste polyvinylchloride (WPVC) and SSC of concentrations (0, 10, 20, 30 and 40 Wt.%) were prepared using solution casting method. Further, the effect of sunflower seed oil (SSO) on the biophysical properties of the prepared composites is also investigated. Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscope, mechanical, thermal, dielectric properties were assessed. Besides, the antimicrobial and biodegradation tests were also studied.

Findings

The crystallinity increases by rising SSC concentration as revealed by XRD results. Additionally, the permittivity (ε′) increases by increasing SSC filler and SSO as well. A remarkable increase in dc conductivity was attained after the addition of SSO. While raw WPVC has very low bacterial activity. The composite films are found to be very effective against staphylococcus epidermidis, staphylococcus aureus bacteria and against candida albicans as well. On the other hand, the weight loss of WPVC increases by adding of SSC and SSO, as disclosed by biodegradation studies.

Originality/value

The study aims to reach the optimum method for safe and beneficial disposal of PVC waste as well as SSC for antistatic and antimicrobial application.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 November 2023

Leila Nikravan, Setayesh Zamanpour and Seyyed Mohammad Ali Noori

The purpose of this paper is to provide an overview of the antimicrobial and antioxidant properties of postbiotics and the use of postbiotics to increase the shelf life and…

Abstract

Purpose

The purpose of this paper is to provide an overview of the antimicrobial and antioxidant properties of postbiotics and the use of postbiotics to increase the shelf life and quality of food.

Design/methodology/approach

In this review paper, all articles from five electronic databases containing Google Scholar, Web of Science, PubMed, Scopus and Science Direct were considered and selected according to the purpose of the study.

Findings

In addition to improving food safety and increasing its shelf life, natural food preservation using biological preservatives also has a positive effect on improving consumer health. As a result, protection using natural antioxidants and antimicrobial agents seems essential. Postbiotics, having favorable characteristics such as nontoxicity, long shelf life and ease of standardization and transportation, are known as suitable antioxidant and antimicrobial, and there is an interest in making antioxidant and antimicrobial active films containing postbiotics to delay spoilage, increase the shelf life of perishable foods without changing their sensory characteristics.

Originality/value

Postbiotic refers to all soluble factors that are either secreted from living probiotic cells or released after cell lysis. These compounds include enzymes, peptides, polysaccharides, organic acids, teichoic acids and cell surface proteins, and their effects have been proven to improve some human and animal diseases. Probiotic bacteria must survive unfavorable conditions such as processing, storage, distribution, preparation and the digestive system to exert their health-giving effects, whereas their metabolites (postbiotics) have overcome these adverse conditions well and may be a good substitute for probiotics.

Details

Nutrition & Food Science , vol. 54 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 8 February 2016

Arvind Soni, G Kandeepan, S. K. Mendiratta, Vivek Shukla and Ashish Kumar

The purpose of this paper was to develop an antimicrobial edible film coated with essential oils for packaging application with characterization of its physicochemical properties

Abstract

Purpose

The purpose of this paper was to develop an antimicrobial edible film coated with essential oils for packaging application with characterization of its physicochemical properties. Livestock products especially meat products need special packaging system for protection. The most well-known packaging materials are polyethylene or co-polymer-based materials which have led to serious ecological problems due to their non-biodegradability and non-renewable nature. There has been a growing interest for edible films in recent years trying to reduce the amount of wastes, capable of protecting the food once the primary packaging is open, and because of public concerns about environmental protection. Various kinds of antimicrobial substances can also be incorporated into edible films to improve their functionality, as these substances could limit or prevent microbial growth on food surface.

Design/methodology/approach

Biopolymers such as carrageenan and carboxymethylcellulose and their various combinations were tried to develop an edible film. The levels of antimicrobial substances such as oregano and thyme essential oils were standardized on the basis of their minimal inhibitory concentration against Escherichia coli, Salmonella pullorum, Staphylococcus aureus and Listeria monocytogenes. Standardized edible film coated with standardized concentration of essential oil was examined for different physicochemical properties and compared with edible film without essential oil.

Findings

In total, 1.5 per cent (w/v) solution of carrageenan was found best suited biopolymer for edible film formation on the basis of thickness, transparency and elongation ability. Combined concentration of oregano (0.02 per cent) and thyme (0.03 per cent) essential oils were found to be best suited for coating the edible film as antimicrobial application.

Research limitations/implications

Future research may benefit from the present attempt in evaluating the potency of easily available agricultural by produces for preparation of economically viable edible film incorporated with various natural biopreservatives in combination for the enhancement of shelf life.

Originality/value

Antimicrobial packaging for enhancing the quality and shelf life of stored meat products offers great scope for further research in this field. Moreover, the literature pertaining to the application of edible films containing biopreservative for chicken meat products is very limited.

Details

Nutrition & Food Science, vol. 46 no. 1
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 8 August 2019

Nishant Kumar and Neeraj

The purpose of this paper is to present an overview of functional properties of the polysaccharide-based component and their application in developing edible film and coating for…

1959

Abstract

Purpose

The purpose of this paper is to present an overview of functional properties of the polysaccharide-based component and their application in developing edible film and coating for the food processing sector.

Design/methodology/approach

In this review study, approximately 271 research and review articles focusing on studies related to polysaccharide-based components and their film-forming properties. This article also focused on the application of polysaccharide-based edible film in the food sector.

Findings

From the literature reviewed, polysaccharide components and components-based edible film/coating is the biodegradable and eco-friendly packaging of the materials and directly consumed by the consumer with food. It has been reported that the polysaccharide components have excellent properties such as being nontoxic, antioxidant, antimicrobial, antifungal and with good nutrients. The polysaccharide-based edible film has lipid and gas barrier properties with excellent transparency and mechanical strength. In various studies, researchers worked on the development of polysaccharide-based edible film and coating by incorporating plant based natural antioxidants. This was primarily done for obtaining improved physical and chemical properties of the edible film and coating. In future, the technology of developing polysaccharide-based edible film and coating could be used for extending the shelf life and preserving the quality of fruits and vegetables at a commercial level. There is more need to understand the role of edible packaging and sustainability in the food and environment sector.

Originality/value

Through this review paper, possible applications of polysaccharide-based components and their function property in the formation of the edible film and their effect on fruits, vegetables and other food products are discussed after detailed studies of literature from thesis and journal article.

Details

Nutrition & Food Science , vol. 49 no. 5
Type: Research Article
ISSN: 0034-6659

Keywords

1 – 10 of 865