Search results

1 – 10 of 392
Article
Publication date: 14 August 2009

Yanyan Fu, Xianguo Hu, Yufu Xu, Xifeng Zhu and Shaotong Jiang

When carrying out bioremediation of water polluted by biomass‐oil, the stains which can degrade the biomass‐oil efficiently should first be found. The purpose of this paper is to…

435

Abstract

Purpose

When carrying out bioremediation of water polluted by biomass‐oil, the stains which can degrade the biomass‐oil efficiently should first be found. The purpose of this paper is to describe how adopted acclimation through the isolated strains degraded efficiently, and got reaction kinetics property.

Design/methodology/approach

During the acclimation, the biodegradation process of biomass‐oil is accorded approximately with the first‐order reaction by the way of Sturm method which is described by measuring CO2 volume from the microbes' production.

Findings

One kind of microbe, Aspergillus versicolor, separated from the activated sludge in the aeration tanks of paper‐mill, is found to have the advantage of biodegradation in case of biomass‐oil from rice straw by rapid thermal‐liquidizing process. The biodegradation ability could be improved in aqueous culture under neutral and acidic conditions. The optimal temperature for biodegradation of biomass‐oil is 40°C. The optimal inocula content for biodegradation of biomass‐oil was 16 vol%.

Research limitations/implications

The variation of lubricity of biomass‐oil with biodegradation needs more attention.

Practical implications

A basic research on the growth of a strain is shown, which is helpful for the biological treatment of biomass‐oil pollution.

Originality/value

One kind of fungi, Aspergillus versicolor, can be used for the biodegradation of biomass‐oil. The effects of various conditions or parameters on biodegradation of biomass‐oil are discovered in aqueous culture conditions in the case of Aspergillus versicolor.

Details

Industrial Lubrication and Tribology, vol. 61 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 April 2012

Boshui Chen, Weijiu Huang and Jianhua Fang

The purpose of this paper is to understand the impacts of oleoyl glycine on biodegradation, friction and wear performances of a mineral lubricating oil.

Abstract

Purpose

The purpose of this paper is to understand the impacts of oleoyl glycine on biodegradation, friction and wear performances of a mineral lubricating oil.

Design/methodology/approach

The biodegradabilities of a neat oil and its formulations with oleoyl glycine were evaluated on a biodegradation tester and the microbial characters in the biodegradation sewage observed through a microscope. Also, the friction and wear performances of neat oil and the formulated oil were determined on a four‐ball tribometer. The morphologies and tribochemical features of the worn surfaces were analyzed by scanning electron microscopy and X‐ray photoelectron spectroscopy.

Findings

Oleoyl glycine markedly enhanced biodegradation of unreadily biodegradable mineral oil and effectively improved its anti‐wear and friction‐reducing abilities. The enhancement of biodegradability of the mineral oil was preliminarily ascribed to the increment of microbial populations in the biodegradation processes, while the improvement of anti‐wear and friction‐reducing abilities was mainly attributed to the formation of a boundary adsorption film of oleoyl glycine on the friction surfaces.

Originality/value

Oleoyl glycine is a biodegradable and low eco‐toxic compound. The authors' work has shown that oleoyl glycine is effective in improving biodegradability and tribological performances of mineral lubricants. Enhancing biodegradability of petroleum‐based lubricants by additives is a new attempt. The paper has significance for improving ecological and tribological performances of mineral lubricants, even for developing petroleum‐based biodegradable lubricants.

Details

Industrial Lubrication and Tribology, vol. 64 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 13 April 2023

Salim Ahmed, Khushboo Kumari and Durgeshwer Singh

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous…

2939

Abstract

Purpose

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous pollutant. Soil contaminated with petroleum hydrocarbons adversely affects the properties of soil. This paper aim to remove pollutants from the environment is an urgent need of the hour to maintain the proper functioning of soil ecosystems.

Design/methodology/approach

The ability of micro-organisms to degrade petroleum hydrocarbons makes it possible to use these microorganisms to clean the environment from petroleum pollution. For preparing this review, research papers and review articles related to petroleum hydrocarbons degradation by micro-organisms were collected from journals and various search engines.

Findings

Various physical and chemical methods are used for remediation of petroleum hydrocarbons contaminants. However, these methods have several disadvantages. This paper will discuss a novel understanding of petroleum hydrocarbons degradation and how micro-organisms help in petroleum-contaminated soil restoration. Bioremediation is recognized as the most environment-friendly technique for remediation. The research studies demonstrated that bacterial consortium have high biodegradation rate of petroleum hydrocarbons ranging from 83% to 89%.

Social implications

Proper management of petroleum hydrocarbons pollutants from the environment is necessary because of their toxicity effects on human and environmental health.

Originality/value

This paper discussed novel mechanisms adopted by bacteria for biodegradation of petroleum hydrocarbons, aerobic and anaerobic biodegradation pathways, genes and enzymes involved in petroleum hydrocarbons biodegradation.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 4 February 2022

Mona Saied, Abeer Reffaee, Shimaa Hamieda, Salwa L. Abd- El- Messieh and Emad S. Shafik

This study aims to get rid of non-degradable polyvinyl chloride (PVC) waste as well as sunflower seed cake (SSC) waste by preparing eco-friendly composites from both in different…

Abstract

Purpose

This study aims to get rid of non-degradable polyvinyl chloride (PVC) waste as well as sunflower seed cake (SSC) waste by preparing eco-friendly composites from both in different proportions to reach good mechanical and insulating properties for antimicrobial and antistatic applications.

Design/methodology/approach

Eco-friendly composite films based on waste polyvinylchloride (WPVC) and SSC of concentrations (0, 10, 20, 30 and 40 Wt.%) were prepared using solution casting method. Further, the effect of sunflower seed oil (SSO) on the biophysical properties of the prepared composites is also investigated. Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscope, mechanical, thermal, dielectric properties were assessed. Besides, the antimicrobial and biodegradation tests were also studied.

Findings

The crystallinity increases by rising SSC concentration as revealed by XRD results. Additionally, the permittivity (ε′) increases by increasing SSC filler and SSO as well. A remarkable increase in dc conductivity was attained after the addition of SSO. While raw WPVC has very low bacterial activity. The composite films are found to be very effective against staphylococcus epidermidis, staphylococcus aureus bacteria and against candida albicans as well. On the other hand, the weight loss of WPVC increases by adding of SSC and SSO, as disclosed by biodegradation studies.

Originality/value

The study aims to reach the optimum method for safe and beneficial disposal of PVC waste as well as SSC for antistatic and antimicrobial application.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 March 2019

Xueqin Kang, Chi Yao and Shirong Ge

This paper aims to investigate the effect of simulated body fluid (SBF) on biodegradation and tribological properties of ultrahigh molecular weight polyethylene (UHMWPE) and…

Abstract

Purpose

This paper aims to investigate the effect of simulated body fluid (SBF) on biodegradation and tribological properties of ultrahigh molecular weight polyethylene (UHMWPE) and UHMWPE stabilized with α-tocopherol.

Design/methodology/approach

The samples of UHMWPE and UHMWPE stabilized with α-tocopherol were prepared by a hot-pressing method, and then immersed in SBF for one year. Tribological test was performed on a UMT-2 tribometer.

Findings

The crystallinity and tribological properties increased slightly after UHMWPE stabilized with α-tocopherol, whereas the O/C ration decreased slightly. The crystallinity and O/C ratio increased after all samples immersed in SBF for one year. This resulted in the deterioration of tribological properties and the wear mechanism change. The tribological properties change was smaller in UHMWPE stabilized with α-tocopherol than that in UHMWPE, because the oxidation resistance of UHMWPE was increased by α-tocopherol.

Originality/value

The results of the experimental studies demonstrated and compared the biodegradation behavior and tribological properties of UHMWPE, UHMWPE stabilized with α-tocopherol, and after they immersed in SBF for one year.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 1999

S.M.E. Meehan, T.R. Weaver and C.R. Lawrence

Cyanide is extremely toxic to both human and aquatic life and exists as a contaminant in soils and groundwater at decommissioned gasworks sites due to past industrial practices…

Abstract

Cyanide is extremely toxic to both human and aquatic life and exists as a contaminant in soils and groundwater at decommissioned gasworks sites due to past industrial practices. This included the processing and disposal of gas purification wastes which contained cyanide. The biodegradability of cyanide at gasworks sites in south‐eastern Australia is investigated to determine the viability of in situ bioremediation. Two study sites show cyanide concentrations in groundwater of up to 5,300mg/L CN (total) in the vicinty of these sites. Laboratory experiments using column microcosms indicate both aerobic and anaerobic biodegradation of cyanide in water. Rates of degradation are typically first order with degradation microbiologically driven and are not simple oxidation‐reduction reactions. The rate of degradation is variable, depending on the existence of microbes, concentration and temperature. Even though both sites have cyanide contamination, only one requires remediation. In situ bioremediation is possible at this site thus providing an acceptable outcome to both site owner and the environment.

Details

Environmental Management and Health, vol. 10 no. 1
Type: Research Article
ISSN: 0956-6163

Keywords

Article
Publication date: 13 May 2024

Emad S. Shafik, Mena Faheem, Marwa El-Sheikh, Amira Abdalla Abdelshafy Mohamed and Seham Samir Soliman

The present work aims to prepare biocomposites blend based on linear low density polyethylene/ starch without using harmful chemicals to improve the adhesion between two phases…

Abstract

Purpose

The present work aims to prepare biocomposites blend based on linear low density polyethylene/ starch without using harmful chemicals to improve the adhesion between two phases. Also, the efficiency of essential oils as green plasticizers and natural antimicrobial agents were evaluated.

Design/methodology/approach

Barrier properties and biodegradation behavior of linear low density polyethylene/starch (LLDPE/starch) blends plasticized with different essential oils including moringa oleifera and castor oils wereassessed as a comparison with traditional plasticizer such as glycerol. Biodegradation behavior forLLDPE/starch blends was monitored by soil burial test. The composted samples were recovered then washed followed by drying, and weighting samples after 30, 60, and 90 days to assess the change in weight loss. Also, mechanical properties including retention values of tensile strength and elongation at break were measured before and after composting. Furthermore, scanning electron microscope (SEM) was used to evaluate the change in the morphology of the polymeric blends. In addition to, the antimicrobial activity of plasticized LLDPE/starch blends films was evaluated using a standard plate counting technique.

Findings

The results illustrate that the water vapor transition rate increases from 2.5 g m−2 24 h−1 for LLDPE/5starch to 4.21 g m−2 24 h−1 and 4.43 g m−2 24 h−1 for castor and moringa oleifera respectively. Also, the retained tensile strength values of all blends decrease gradually with increasing composting period. Unplasticized LLDPE/5starch showed highest tensile strength retention of 91.6% compared to the other blends that were 89.61, 88.49 and 86.91 for the plasticized LLDPE/5starch with glycerol, castor and M. oleifera oils respectively. As well as, the presence of essential oils in LLDPE/ starch blends increase the inhibition growth of escherichia coli, candida albicans and staphylococcus aureus.

Originality/value

The objective of this work is to develop cost-effective and environmentally-friendly methods for preparing biodegradable polymers suitable for packaging applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Content available

Abstract

Details

Industrial Lubrication and Tribology, vol. 52 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 1994

T.W. Dicken

Describes the requirements for biodegradability, defines the different terms and lists the various tests used. Outlines how greases can cause pollution. Details the main primary…

373

Abstract

Describes the requirements for biodegradability, defines the different terms and lists the various tests used. Outlines how greases can cause pollution. Details the main primary biodegradability test for lubricants and how to formulate greases to optimize breakdown in the environment and still lubricate well. Gives examples of commercial biodegradable greases.

Details

Industrial Lubrication and Tribology, vol. 46 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 April 2019

Jianhua Ding, Jianhua Fang, Boshui Chen, Nan Zhang, Xingyu Fan and Zhe Zheng

This paper aims to understand the influences of tris (2-hydroxyethyl) isocyanurate oleate and oleic acid tris (2-hydroxyethyl) isocyanurate phosphate ester on biodegradability and…

Abstract

Purpose

This paper aims to understand the influences of tris (2-hydroxyethyl) isocyanurate oleate and oleic acid tris (2-hydroxyethyl) isocyanurate phosphate ester on biodegradability and tribological performances of mineral lubricating oil.

Design/methodology/approach

Tris (2-hydroxyethyl) isocyanurate oleate and oleic acid tris (2-hydroxyethyl) isocyanurate phosphate ester were prepared and characterized by Fourier transform infrared spectrometer. The biodegradability and tribological properties of neat oil and its formulations were studied on a tester for fast evaluating biodegradability of lubricants and a four-ball tester, respectively. The worn surfaces were investigated by scanning electron microscope and X-ray photoelectron spectroscope.

Findings

Tris (2-hydroxyethyl) isocyanurate oleate and oleic acid tris (2-hydroxyethyl) isocyanurate phosphate ester both improved markedly the biodegradability, the anti-wear properties, friction-reducing properties and extreme pressure properties of base oil. The effect of oleic acid tris (2-hydroxyethyl) isocyanurate phosphate ester was better than tris (2-hydroxyethyl) isocyanurate oleate. The improvement of tribological performances was mainly ascribed to the formation of a complicated boundary lubrication film of tris (2-hydroxyethyl) isocyanurate oleate and oleic acid tris (2-hydroxyethyl) isocyanurate phosphate ester on the friction surfaces.

Originality/value

This paper has indicated that tris (2-hydroxyethyl) isocyanurate oleate and oleic acid tris (2-hydroxyethyl) isocyanurate phosphate ester effectively improve the biodegradability and tribological performances of mineral lubricating oil. Promoting biodegradation of mineral lubricant by additives is very significant for the development of petroleum-based biodegradable lubricants. These two additives not merely improve the tribological performances; more importantly, they improve the ecological performances.

Details

Industrial Lubrication and Tribology, vol. 71 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 392