Search results

1 – 10 of over 18000
Article
Publication date: 1 March 1999

Krishna R. Reddy, Robin Semer and Jeffrey A. Adams

This paper presents the results of laboratory experiments that investigate the removal of volatile organic compounds from saturated soils through the use of air sparging. Three…

Abstract

This paper presents the results of laboratory experiments that investigate the removal of volatile organic compounds from saturated soils through the use of air sparging. Three series of experiments were performed in a column test apparatus using two different soils to represent actual field conditions, namely, a fine gravel and a medium‐to‐fine Ottawa sand (both obtained from sources near Chicago, Illinois, USA) contaminated with toluene, a major constituent of petroleum products. The results showed that toluene was removed from gravel very efficiently using air sparging; complete removal was achieved using a variety of air flow rates. However the toluene removal rates in tests using sand were significantly less. Even at the highest air flow rate used during testing, complete toluene removal took eight times longer than in comparable tests using gravel. With low air flow rates this was not achieved even after 17 hours of testing. It was further found that the injection of foams generated with surfactants, SDS and witconol SN70, at low air flow rates during the use of air sparging was found to accelerate the bulk removal of toluene in sand, but the use of surfactants did not facilitate the removal of residual levels of contamination.

Details

Environmental Management and Health, vol. 10 no. 1
Type: Research Article
ISSN: 0956-6163

Keywords

Article
Publication date: 1 August 1999

A.D. Stennett and D.C. Whalley

Component removal for rework and repair is traditionally achieved by re‐melting of the solder, but the exposure of the assembly or its component parts to repeated soldering…

Abstract

Component removal for rework and repair is traditionally achieved by re‐melting of the solder, but the exposure of the assembly or its component parts to repeated soldering/ desoldering cycles may cause both immediate damage and create a significant long term reliability hazard. Rework is labour intensive and requires skilled operators. Area array components further increase the complexity of the rework process because of the number and inaccessibility of the solder joints. There is a growing requirement to recycle/reclaim electronic waste, creating the need for an effective process for dismantling of printed circuit board assemblies (PCBAs). This paper will present a brief review of alternative non‐thermal techniques for rework or dismantling of conventional soldered assemblies, including both chemical etchants and mechanical techniques. Results will then be presented on trials of chemical etchants, where rates of solder removal consistent with realistic times for component removal have been readily achieved using commercially available tin‐lead strippers. Electrochemical techniques are also shown to be usable in specific applications, i.e. where electrical contact can be readily made to the solder joints to be removed, and have the advantage of reclaiming the removed solder directly from the electrolyte.

Details

Soldering & Surface Mount Technology, vol. 11 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 February 2014

De-Xing Peng

Chemical mechanical polishing (CMP) has attracted much attention recently because of its importance as a nano-scale finishing process for high value-added large components that…

Abstract

Purpose

Chemical mechanical polishing (CMP) has attracted much attention recently because of its importance as a nano-scale finishing process for high value-added large components that are used in the aerospace industry. The paper aims to discuss these issues.

Design/methodology/approach

The characteristics of aluminum nanoparticles slurry including oxidizer, oxidizer contents, abrasive contents, slurry flow rate, and polishing time on aluminum nanoparticles CMP performance, including material removal amount and surface morphology were studied.

Findings

Experimental results indicate that the CMP performance depends strongly on the oxidizer, oxidizer contents, and abrasive contents. Surface polished by slurries that contain nano-Al abrasives had a lower surface average roughness (Ra), lower topographical variations and less scratching. The material removal amount and the Ra were 124 and 7.61 nm with appropriate values of the process parameters of the oxidizer, oxidizer content, abrasive content, slurry flow rate and polishing time which were H2O2, 2 wt.%, 1 wt.%, 10 ml/min, 5 min, respectively.

Originality/value

Based on SEM determinations of the process parameters for the polishing of the surfaces, the CMP mechanism was deduced preliminarily.

Details

Industrial Lubrication and Tribology, vol. 66 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 August 2021

Wei Zhang, Mengdi Zhang, Zhijie Huangfu, Jiming Yao and Yuan Xie

This study aims to explore suitable anode materials used in the electrochemical system for indigo dyeing wastewater, to achieve optimal treatment performances.

Abstract

Purpose

This study aims to explore suitable anode materials used in the electrochemical system for indigo dyeing wastewater, to achieve optimal treatment performances.

Design/methodology/approach

The single factor experiment was used to explore the optimum process parameters for electrochemical decolorization of indigo dyeing wastewater by changing the applied voltage, electrolysis time and electrolyte concentration. At the voltage of 9 V, the morphology of flocs with different electrolytic times was observed and the effect of electrolyte concentration on decolorization rate in two electrolyte systems was also investigated. Further analysis of chemical oxygen demand (COD) removal rate, anode weight loss and sediment quantity after electrochemical treatment of indigo dyeing wastewater were carried out.

Findings

Comprehensive considering the decolorization degree and COD removal rate of the wastewater, the aluminum electrode showed the best treatment effect among several common anode materials. With aluminum electrode as an anode, under conditions of applied voltage of 9 V, electrolysis time of 40 min and sodium sulfate concentration of 6 g/L, the decolorization percentage obtained was of 94.59% and the COD removal rate reached at 84.53%.

Research limitations/implications

In the electrochemical treatment of indigo dyeing wastewater, the aluminum electrode was found as an ideal anode material, which provided a reference for the choice of anodes. The electrodes used in this study were homogenous material and the composite material anode needed to be further researched.

Practical implications

It provided an effective and practical anode material choice for electrochemical degradation of indigo dyeing wastewater.

Originality/value

Combined with the influence of applied voltage, electrolysis time and electrolyte concentration and anode materials on decolorization degree and COD removal rate of indigo dyeing wastewater, providing a better electrochemical treatment system for dyehouse effluent.

Details

Pigment & Resin Technology, vol. 51 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 May 2020

Weiwei Lv, Zhijie Huangfu, Kangkang Wang, Wei Zhang and Jiming Yao

Indirect electrochemical oxidation and electro-flocculation were combined to degrade indigo wastewater.

Abstract

Purpose

Indirect electrochemical oxidation and electro-flocculation were combined to degrade indigo wastewater.

Design/methodology/approach

The degradation efficiency of indigo wastewater in single-cell and double-cell were investigated. Based on the previous single factor experiments, the oxidative degradation conditions of indigo wastewater in single cell were optimized by response surface methodology (RSM). The decolorization rate, chemical oxygen demand (COD) removal rate, the contents of flocculation precipitation and indigo were measured and analyzed.

Findings

The degradation efficiency in single cell was higher than in double cell. The electrolysis conditions were optimized by RSM and the decolorization rate was 99.01% with COD removal rate of 60.34% and conductivity of 89.75 mS/cm. The amount of flocculated precipitation decreased by 53.33% and the indigo increased by 86.34%. The content of Na and S decreased by 12.13 and 6.49%, respectively. The ratio of Fe3+ to Fe2+ in the solution was 4.62:1, indicating that most of the iron dropped on the electrode sheet was converted to Fe3+.

Research limitations/implications

The one-step electrochemical oxidation and flocculation method with the advantages of simple operation and environmental protection, provided a reference for the actual treatment of dyeing wastewater.

Practical implications

Combining the electrochemical flocculation and oxidation provided an efficient and practical solution for degradation of indigo wastewater.

Originality/value

Combining the advantages of electrochemical oxidation and electroflocculation, the application of electrochemistry in printing and dyeing wastewater treatment technology has been expanded.

Details

Pigment & Resin Technology, vol. 50 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 November 2022

Rajneesh Kumar and Pradeep Kumar Jha

The purpose of this article is to numerically investigate the effect of casting speed on the fluid flow, solidification and inclusion motion under the influence of electromagnetic…

Abstract

Purpose

The purpose of this article is to numerically investigate the effect of casting speed on the fluid flow, solidification and inclusion motion under the influence of electromagnetic stirring (EMS) in the bloom caster mold with bifurcated submerged entry nozzle (SEN).

Design/methodology/approach

The electromagnetic field obtained by solving Maxwell’s equation is coupled with the fluid flow, solidification and discrete phase model using the in-house user-defined functions. An enthalpy porosity approach and Lagrangian approach are applied for the solidification analysis and non-metallic inclusions motion tracking, respectively.

Findings

Investigation shows that the casting speed and EMS significantly affect the steel flow, solidification and inclusion behavior inside the mold. Investigations are being conducted into the complex interplay between the induced flow and the SEN’s inertial impinging jet. In low and medium casting speeds, the application of EMS significantly increases the inclusion removal rate. Inclusion removal is studied for its different size and density and further effect of EMS is also reported on cluster formation and distribution of inclusion in the domain.

Practical implications

The model may be used to optimize the process parameter (casting speed and EMS) to improve the casting quality of steel by removing the impurities.

Originality/value

The effect of casting speed on the solidification and inclusion behavior under the influence of time-varying EMS in bloom caster mold with bifurcated nozzle has not been investigated yet. The findings may assist the steelmakers in improving the casting quality.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 May 2014

Boby John

The purpose of this paper is to develop a methodology to reduce the field failures of splined shafts. The paper also demonstrates the application of Mahalanobis-Taguchi system…

Abstract

Purpose

The purpose of this paper is to develop a methodology to reduce the field failures of splined shafts. The paper also demonstrates the application of Mahalanobis-Taguchi system (MTS) for identifying the optimum hardness profile to avoid failures.

Design/methodology/approach

Through the usage profile analysis and comparison between the failed and good shafts, the major reason for shaft failure was identified as hardness variation. Then MTS approach was used to identify the optimum hardness profile for the shafts. An experiment was designed with power, feed and the gap between inductor and quench ring representing the heat transfer rate, heat removal rate and the time between heat transfer and removal of induction hardening process as factors. Based on experimental results, the optimum combination factors that would reduce the variation around the optimum hardness profile were identified.

Findings

The study showed that the shaft failures can be reduced by optimizing the hardness profile of the shafts rather than warning customers on overloading, changing the raw material or investing on machining operation to achieve better shaft finish. The study suggested heat transfer rate, heat removal rate and the time between heat transfer and removal had significant impact on the shaft's hardness profile. The study resulted in reducing the field failures from 0.32 to 0.029 percent.

Practical implications

This study provides valuable information on how to identify optimum hardness profile using MTS methodology to reduce shaft failures and how to minimize the variation around the optimum hardness profile using design of experiments.

Originality/value

To the best of author's knowledge, no study has been conducted to identify optimum hardness profile using MTS methodology. The study also provides an approach to minimize the variation around a non-linear hardness profile using design of experiments.

Details

International Journal of Quality & Reliability Management, vol. 31 no. 6
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 18 August 2022

Shailendra Chauhan, Rajeev Trehan and Ravi Pratap Singh

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting…

Abstract

Purpose

This work aims to describe the face milling analysis on Inconel X-750 superalloy using coated carbides. The formed chips and tool wear were further analyzed at different cutting parameters. The various impact of cutting parameters on chip morphology was also analyzed. Superalloys, often referred to as heat-resistant alloys, have exceptional tensile, ductile and creep strength at high operating temperatures and good fatigue strength, and often better corrosion and oxidation resistance at extreme heat. Because of these qualities, these alloys account for more than half of the weight of sophisticated aviation, biomedical and thermal power plants today. Inconel X-750 is a high-temperature nickel-based superalloy that is hard to machine because of its extensive properties. At last, the discussion regarding the tool wear mechanism was analyzed and discussed in this article.

Design/methodology/approach

The machining parameters for the study are cutting speed, feed rate and depth of cut. One factor at a time approach was implemented to investigate the effect of cutting parameters on the cutting forces, surface roughness and material removal rate. The scatter plot was plotted between cutting parameters and target functions (cutting forces, surface roughness and material removal rate). The six levels of cutting speed, feed rate and depth of cut were taken as cutting parameters.

Findings

The cutting forces are primarily affected by the cutting parameters, tool geometry, work material etc. The maximum forces Fx were encountered at 10 mm/min cutting speed, 0.15 mm/rev feed rate and 0.4 mm depth of cut, further maximum forces Fy were attained at 10 mm/min cutting speed, 0.25 mm/rev feed rate and 0.4 mm depth of cut and maximum forces Fz were attained at 50 mm/min cutting speed, 0.05 mm/rev feed rate and 0.4 mm depth of cut. The maximum surface roughness value was observed at 40 mm/min cutting speed, 0.15 mm/rev feed rate and 0.5 mm depth of cut.

Originality/value

The effect of machining parameters on cutting forces, surface roughness, chip morphology and tool wear for milling of Inconel X-750 high-temperature superalloy is being less researched in the present literature. Therefore, this research paper will give a direction for researchers for further studies to be carried out in the domain of high-temperature superalloys. Furthermore, the different tool wear mechanisms at separate experimental trials have been explored to evaluate and validate the process performance by conducting scanning electron microscopy analysis. Chip morphology has also been evaluated and analyzed under the variation of selected process inputs at different levels.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 August 2021

Ravi Pratap Singh, Narendra Kumar, Ashutosh Kumar Gupta and Madhusudan Painuly

The purpose of this paper is to investigate experimentally the effect of several input process factors, namely, feed rate, spindle speed, ultrasonic power and coolant pressure, on…

Abstract

Purpose

The purpose of this paper is to investigate experimentally the effect of several input process factors, namely, feed rate, spindle speed, ultrasonic power and coolant pressure, on hole quality measures (penetration rate [PR] and chipping diameter [CD]) in rotary mode ultrasonic drilling of macor bioceramic material.

Design/methodology/approach

The main experiments were planned using the response surface methodology (RSM). Scanning electron microscopy was also used to examine and study the microstructure of machined samples. This study revealed the existence of dominant brittle fracture and little plastic flow that resulted in a material loss from the base work surface. Experiment findings have shown the dependability and adequacy of the proposed mathematical model.

Findings

The percentage of brittle mode deformation rises as the penetration depth of abrasives increases (at increasing levels of feed rate). This was due to the fact that at greater depths of indentation, material loss begins in the form of bigger chunks and develops inter-granular fractures. These stated causes have provided an additional advantage to increasing the CD over the machined rod of bioceramic. The desirability method was also used to optimize multi-response measured responses (PR and CD). The mathematical model created using the RSM method will be very useful in industrial revelation. Furthermore, the investigated answers’ particle swarm optimization (PSO) and teacher-learner-based optimization (TLBO) make the parametric analysis more relevant and productive for real-life industrial practices.

Originality/value

Macor bioceramic has been widely recognized as one of the most highly demanded innovative dental ceramics, receiving expanded industry approval because of its outstanding and superior characteristics. However, effective and efficient processing remains a problem. Among the available contemporary machining methods introduced for processing typical and advanced materials, rotary mode ultrasonic machining has been identified as one of the best suitable candidates for precise processing of macor bioceramics, as this process produces thermal damage-free profiles, as well as high accuracy and an increased material removal rate. The optimized combined setting obtained using PSO is feed rate = 0.16 mm/s, spindle speed = 4,500 rpm, ultrasonic power = 60% and coolant pressure = 280 kPa with the value of fitness function is 0.0508. The optimized combined setting obtained using TLBO is feed rate = 0.06 mm/s, spindle speed = 2,500 rpm, ultrasonic power = 60% and coolant pressure = 280 kPa with the value of fitness function is 0.1703.

Details

World Journal of Engineering, vol. 19 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 September 2015

Devdas Shetty and Ahad Ali

The purpose of this paper is to develop a tool design for assembly and disassembly using rating factors. Design engineers need an automated tool to effectively analyze the ease of…

Abstract

Purpose

The purpose of this paper is to develop a tool design for assembly and disassembly using rating factors. Design engineers need an automated tool to effectively analyze the ease of assembly and disassembly of the products or subassemblies. A good assembly design helps in easier disassembly and thus makes it easier to service, repair and maintain. Reuse and recycling aspects are given importance in the present days due to environmental regulations. Designers now use the life cycle design of the products. This creates an environment for the successful application of design for manufacturing, assembly and disassembly tools. This paper addresses some of those issues.

Design/methodology/approach

The analysis of a product design for ease of assembly/disassembly depends largely on whether the product is to be assembled/disassembled manually, with automation or a combination of these. For example, the criteria for ease of automatic feeding and orienting are much more stringent than those for manual handling of parts. The new design for assembly/disassembly (DFA/DFD) evaluation tool explained here enables the designer to review the existing design. This paper examines the existing techniques in the area of DFA/DFD and suggests a new methodology based on rating factors. Excel is used to create the interface for the user. Other popular methods were examined such as Boothroyd-Dewhurst, Lucas. Access, reuse, removal, tool, task and time method and assembly score method (Poli) were used as a base for this study.

Findings

The end result of this research is a new approach linked to assembly/disassembly rating score.

Originality/value

The new DFA/DFD evaluation tool enables the designer to review the existing DFA and DFD difficulties.

Details

Assembly Automation, vol. 35 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 18000