Search results

1 – 3 of 3
Article
Publication date: 20 May 2020

Weiwei Lv, Zhijie Huangfu, Kangkang Wang, Wei Zhang and Jiming Yao

Indirect electrochemical oxidation and electro-flocculation were combined to degrade indigo wastewater.

Abstract

Purpose

Indirect electrochemical oxidation and electro-flocculation were combined to degrade indigo wastewater.

Design/methodology/approach

The degradation efficiency of indigo wastewater in single-cell and double-cell were investigated. Based on the previous single factor experiments, the oxidative degradation conditions of indigo wastewater in single cell were optimized by response surface methodology (RSM). The decolorization rate, chemical oxygen demand (COD) removal rate, the contents of flocculation precipitation and indigo were measured and analyzed.

Findings

The degradation efficiency in single cell was higher than in double cell. The electrolysis conditions were optimized by RSM and the decolorization rate was 99.01% with COD removal rate of 60.34% and conductivity of 89.75 mS/cm. The amount of flocculated precipitation decreased by 53.33% and the indigo increased by 86.34%. The content of Na and S decreased by 12.13 and 6.49%, respectively. The ratio of Fe3+ to Fe2+ in the solution was 4.62:1, indicating that most of the iron dropped on the electrode sheet was converted to Fe3+.

Research limitations/implications

The one-step electrochemical oxidation and flocculation method with the advantages of simple operation and environmental protection, provided a reference for the actual treatment of dyeing wastewater.

Practical implications

Combining the electrochemical flocculation and oxidation provided an efficient and practical solution for degradation of indigo wastewater.

Originality/value

Combining the advantages of electrochemical oxidation and electroflocculation, the application of electrochemistry in printing and dyeing wastewater treatment technology has been expanded.

Details

Pigment & Resin Technology, vol. 50 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 October 2019

Wei Zhang, Weiwei Lv, Xiaoyan Li and Jiming Yao

In this study, the oxidative degradation performance of indigo wastewater based on electrochemical systems was explored. The decolourization degrees, removal rate of chemical…

Abstract

Purpose

In this study, the oxidative degradation performance of indigo wastewater based on electrochemical systems was explored. The decolourization degrees, removal rate of chemical oxygen demand and biochemical oxygen demand of the indigo wastewater after degradation were evaluated and optimized treatment conditions being obtained.

Design/methodology/approach

The single factor method was first used to select the electrolyte system and electrode materials. Then the response surface analysis based on Box–Behnken Design was chosen to determine the influence of four independent variables such as FeCl3 concentration, NaCl concentration, decolourization time and voltage on the degradation efficiency.

Findings

On the basis of single factor experiment, the electrode material of stainless steel was selected in the double cell, and the indigo wastewater was electrolyzed with FeCl3 and NaCl electrolytes. The process conditions of electrochemical degradation of indigo wastewater were optimized by response surface analysis: the concentration of FeCl3 and NaCl was of 16 and 9 g/L, respectively, with a decolourization time of 50 min, voltage of 10 V and decolourization percentage of 98.94. The maximum removal rate of chemical oxygen demand reached 75.46 per cent. The highest ratio of B/C was 3.77, which was considered to be more biodegradable.

Research limitations/implications

Dyeing wastewater is bringing out more and more pollution problems to the environment. However, there are some shortcomings in traditional technologies such as adsorption and filtration. As a kind of efficient and clean water treatment technology, electrochemical oxidation has been applied to the treatments of various types of wastewater. The decolourization and degradation of indigo wastewater is taken as an example to provide reference for the treatment of wastewater in actual plants.

Practical implications

The developed method provided a simple and practical solution for efficiently degrading indigo wastewater.

Originality/value

The method for the electrochemical oxidation technology was novel and could find numerous applications in the degradation of printing and dyeing wastewater.

Details

Pigment & Resin Technology, vol. 49 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 February 2024

Dawu Shu, Shaolei Cao, Yan Zhang, Wanxin Li, Bo Han, Fangfang An and Ruining Liu

This paper aims to find a suitable solution to degrade the C.I. Reactive Red 24 (RR24) dyeing wastewater by using sodium persulphate to recycle water and inorganic salts.

Abstract

Purpose

This paper aims to find a suitable solution to degrade the C.I. Reactive Red 24 (RR24) dyeing wastewater by using sodium persulphate to recycle water and inorganic salts.

Design/methodology/approach

The effects of temperature, the concentration of inorganic salts and Na2CO3 and the initial pH value on the degradation of RR24 were studied. Furthermore, the relationship between free radicals and RR24 degradation effect was investigated. Microscopic routes and mechanisms of dye degradation were further confirmed by testing the degradation karyoplasmic ratio of the product. The feasibility of the one-bath cyclic dyeing in the recycled dyeing wastewater was confirmed through the properties of dye utilization and color parameters.

Findings

The appropriate conditions were 0.3 g/L of sodium persulphate and treatment at 95°C for 30 min, which resulted in a decolorization rate of 98.4% for the dyeing wastewater. Acidic conditions are conducive to rapid degradation of dyes, while ·OH or SO4· have a destructive effect on dyes under alkaline conditions. In the early stage of degradation, ·OH played a major role in the degradation of dyes. For sustainable cyclic dyeing of RR24, inorganic salts were reused in this dyeing process and dye uptake increased with the times of cycles. After the fixation, some Na2CO3 may be converted to other salts, thereby increasing the dye uptake in subsequent cyclic staining. However, it has little impact on the dye exhaustion rate and color parameters of dyed fabrics.

Originality/value

The recommended technology not only reduces the quantity of dyeing wastewater but also enables the recycling of inorganic salts and water, which meets the requirements of sustainable development and clean production.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 3 of 3