Search results

1 – 10 of 43
Article
Publication date: 1 July 2004

Sukanta K. Dash, Swasti Sunder Mondal and Satish K. Ajmani

Two‐dimensional numerical simulations have been performed using a finite volume method that employs unstructured grids with cell‐wise local refinement and an interface‐capturing…

Abstract

Two‐dimensional numerical simulations have been performed using a finite volume method that employs unstructured grids with cell‐wise local refinement and an interface‐capturing scheme to predict the shape of the free surface, thus simulating the surface wave that is created in a mold due to the flow from the submerged entry nozzle (SEN). Simulation has been done for 1:6.25 aspect ratio of the mold having a height of 2 m with parallel rectangular ports as well as 15° upward and downward ports. It has been found that for low inlet velocity of the SEN (<1 m/s) the maximum wave amplitude of the surface remains below 12 mm and no outside air is entrapped by the wave to form a bubble. However, for high inlet velocity (2 m/s or more) there is considerable fluctuations on the free surface and the maximum wave amplitude shoot up beyond 70 mm at the start up and slowly falls to about 30 mm entrapping air bubbles from the surroundings. The movement of the air bubble within the mold and its rise to the free surface where it subsequently collapses has been captured well in the numerical simulation. The overall shape of the free surface matches well, excepting the initial transience, with that of the experimentally observed free surface, although the free surface never attains a perfect steady shape neither in the experiment nor in the numerical simulation due to its continuous oscillation and breaking.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2015

Theofani Tzevelekou, Spyros Papaefthymiou, Vasiliki Panteleakou, Athanasios Vazdirvanidis, Dimitris C. Papamantellos and Panagiotis Sismanis

A failed disc that was forged from S355J2 round bar was investigated in order to determine the failure route cause. The purpose of this paper is to determine the defects and route…

Abstract

Purpose

A failed disc that was forged from S355J2 round bar was investigated in order to determine the failure route cause. The purpose of this paper is to determine the defects and route cause analysis regarding their origin.

Design/methodology/approach

Macroscopic evaluation, microstructure observation using light optical metallography and scanning electron microscopy with EDX analysis were the techniques used to analyse and characterize the defected areas.

Findings

Macro-inclusions (up to 850 µm) that correspond to high melting aluminium rich calcium-aluminate particles were detected. Their formation, possibly due to improper calcium treatment during ladle furnace steel refining process might be associated with clogging problems at casting. SEM-EDX analysis revealed whitish spots containing Zr that could be related to submerged entry nozzle (SEN) erosion/breakage. Characteristic is the large size and unusual shape of the traced particles, as well as the presence of low Si, Na, K. The findings indicated that nozzle clogging and/or breakage at casting was most possibly the root cause of the product’s quality degradation.

Originality/value

After extended root cause analysis, specific countermeasures are proposed to avoid clogging phenomena. The suggestions are based on the findings taking into account restrains of the steel-making process. Emphasis was laid in detecting the weaknesses that lead to product quality degradation and consequently in optimizing the steel-making process. Such incidents are often found during steelmaking a useful suggestion to steelmakers is to mark and remove cast parts after SEN problems are encountered. In this way quality issues in intermediate and/or final products will be avoided.

Details

International Journal of Structural Integrity, vol. 6 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 March 2017

Zhuang Li, Engang Wang, Yu Xu and Lin Xu

To effectively control the molten steel flow and the stability of free surface in continuous casting mould, this paper aims to propose a new type electromagnetic brake technique…

Abstract

Purpose

To effectively control the molten steel flow and the stability of free surface in continuous casting mould, this paper aims to propose a new type electromagnetic brake technique, namely, vertical electromagnetic brake (V-EMBr). Its brake effect under special processing parameters such as submerged entry nozzle (SEN) depth and port angle is evaluated by the numerical simulation methods.

Design/methodology/approach

A couple three-dimensional mathematical model of fluid flow and static magnetic field was developed to investigate the behaviour of molten steel flow and steel/slag interface in the continuous casting mould, and a volume of fluid model is used to track the interfacial behaviour of molten steel and liquid slag by solving the continuity equation of the phase volume fraction.

Findings

The simulation results showed that the application of V-EMBr can significantly reduce the flow intensity in upper recirculation zone and decrease the meniscus height and the flow velocity of molten steel in the vicinity of narrow side of mould, which is beneficial to reduce the possibility of mould flux entrapment. Especially, the brake effect of V-EMBr has a little affected by the SEN depth and port angle, which is helpful for V-EMBr to better adapt the actual continuous casting process.

Originality/value

Compared to the conventional-level EMBr, the new proposed V-EMBr has the advantage to effectively control the molten steel flow and steel/slag interfacial fluctuation in the vicinity of narrow side of mould with a pair of magnetic fields, and its brake effect is less affected by the changes in continuous casting processing parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 November 2022

Rajneesh Kumar and Pradeep Kumar Jha

The purpose of this article is to numerically investigate the effect of casting speed on the fluid flow, solidification and inclusion motion under the influence of electromagnetic…

Abstract

Purpose

The purpose of this article is to numerically investigate the effect of casting speed on the fluid flow, solidification and inclusion motion under the influence of electromagnetic stirring (EMS) in the bloom caster mold with bifurcated submerged entry nozzle (SEN).

Design/methodology/approach

The electromagnetic field obtained by solving Maxwell’s equation is coupled with the fluid flow, solidification and discrete phase model using the in-house user-defined functions. An enthalpy porosity approach and Lagrangian approach are applied for the solidification analysis and non-metallic inclusions motion tracking, respectively.

Findings

Investigation shows that the casting speed and EMS significantly affect the steel flow, solidification and inclusion behavior inside the mold. Investigations are being conducted into the complex interplay between the induced flow and the SEN’s inertial impinging jet. In low and medium casting speeds, the application of EMS significantly increases the inclusion removal rate. Inclusion removal is studied for its different size and density and further effect of EMS is also reported on cluster formation and distribution of inclusion in the domain.

Practical implications

The model may be used to optimize the process parameter (casting speed and EMS) to improve the casting quality of steel by removing the impurities.

Originality/value

The effect of casting speed on the solidification and inclusion behavior under the influence of time-varying EMS in bloom caster mold with bifurcated nozzle has not been investigated yet. The findings may assist the steelmakers in improving the casting quality.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 September 2018

Ambrish Maurya and Pradeep Kumar Jha

This investigation aims to analyze the steel-flux interface level fluctuation because of electromagnetic stirring and its process parameters in a continuous casting billet mold.

Abstract

Purpose

This investigation aims to analyze the steel-flux interface level fluctuation because of electromagnetic stirring and its process parameters in a continuous casting billet mold.

Design/methodology/approach

An un-coupled numerical model for electromagnetic field generation and a coupled numerical model of electromagnetic field and two-phase fluid flow have been developed. The two-phase fluid flow has been modeled using volume of fluid method, in which externally generated time-varying electromagnetic field is coupled and analyzed using magnetohydrodynamic method. Top surface standing wave stability criteria are used to study the criticality of interface stability.

Findings

Results show that application electromagnetic field for stirring increases the interface level fluctuation, specifically at the mold corners and near the submerged entry nozzle. The increase in current intensity and stirrer width barely affect the interface level. However, interface level fluctuation increases considerably with increase in frequency. Using stability criteria, it is found that at 20 Hz frequency, the ratio of height to wavelength of interface wave increases much above the critical value. The iso-surface of the interface level shows that at 20 Hz frequency, mold flux gets entrapped into the liquid steel.

Practical implications

The model may be used during optimization of in-mold electromagnetic stirrer to avoid mold flux entrapment and control the cast quality.

Originality/value

The study of mold level fluctuation in the presence of in-mold electromagnetic stirrer has rarely been reported. The criticality of stirrer process parameters on level fluctuation has not been yet reported. This study lacks in experimental validation; however, the findings will be much useful for the steelmakers to reduce the casting defects.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 August 2023

Rajneesh Kumar and Pradeep Kumar Jha

The purpose of this study is to explore how a time-varying electromagnetic stirring (EMS) affects the fluid flow and solidification behavior in a slab caster continuous casting…

Abstract

Purpose

The purpose of this study is to explore how a time-varying electromagnetic stirring (EMS) affects the fluid flow and solidification behavior in a slab caster continuous casting mold. Further, the study of inclusion movements in the mold is carried out under the effect of a time-varying electromagnetic field.

Design/methodology/approach

A three-dimensional coupled numerical model of solidification and magnetohydrodynamics has been developed for slab caster mold to investigate the inclusions transport by discrete phase model with the use of user-defined functions. Enthalpy porosity and the Lagrangian approach are applied to analyze the behavior of solidification and inclusion.

Findings

The study shows that the magnetic field density distribution has a radial symmetry in relation to the stirrer’s center. As the EMS current intensity increases, the strength of the lower recirculation zone gradually decreases and nearly disappears at higher intensities. Additionally, the area of localized remelting zone expands in the solidification front with rising current intensity. The morphology of inclusions and EMS current intensity have a significant impact on the behavior and movement of inclusions within the molten steel.

Practical implications

By using the model, one can optimize the EMS parameter to enhance the quality of steel casting through the elimination of impurities and by improving the microstructure of cast that mainly depend on solidification and flow patterns of molten steel.

Originality/value

Until now, the use of time-varying EMS in the slab caster mold to study solidification and inclusion behavior has not been explored.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2016

Kesheng Zuo, Haitao Zhang, Ke Qin and Jianzhong Cui

The purpose of this paper is to study the effect of feeding scheme on melt flow and temperature field during the steady-state of level-pour direct-chill (DC) casting of A390 alloy…

Abstract

Purpose

The purpose of this paper is to study the effect of feeding scheme on melt flow and temperature field during the steady-state of level-pour direct-chill (DC) casting of A390 alloy hollow billet and optimize the design of feeding scheme.

Design/methodology/approach

Melt flow and temperature field are investigated by numerical simulation, which is based on a three-dimensional mathematical model and well verified by experiments.

Findings

The numerical results reveal that both melt flow and temperature field are obviously affected by the feeding scheme. The homogeneity of melt flow and temperature field in hollow billet with the feeding scheme of modified four inlets are better than the other feeding schemes. Experimental results show that crack can be eliminated by increasing the number of feeding inlets. The primary Si size appears unaffected while the distribution of primary Si particles is highly affected by the change of feeding scheme. Only with the feeding scheme of modified four inlets can fine and uniformly distributed primary Si particles be achieved.

Practical implications

The paper includes implications for the design of feeding scheme in level-pour DC casting of hollow billet for practical use.

Originality/value

This paper develops different feeding schemes for level-pour DC casting of hollow billet and optimizes the design of feeding scheme.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2005

Satish K. Ajmani, Swasti S. Mondal and Sukanta K. Dash

The objective of the research work is to predict the volume of fluid drained from a cylindrical vessel without entrapping air through the drainpipe, and hence predict the location…

Abstract

Purpose

The objective of the research work is to predict the volume of fluid drained from a cylindrical vessel without entrapping air through the drainpipe, and hence predict the location of the free surface of the liquid in the vessel.

Design/methodology/approach

A two‐dimensional axi‐symmetric numerical simulation has been made using a finite volume method that employs unstructured grids with cell‐wise local refinement and an interface capturing scheme to predict the shape of the free surface of water in a cylindrical vessel, thus simulating the entrapment of air in the drainpipe connected to the vessel.

Findings

A drain cover was placed on top of the drainpipe to delay the entry of air into the drainpipe. It was found that an increase in the diameter of the drain cover increases the amount of liquid to be drained out before the air could enter into the drainpipe. It was found that air enters the drainpipe at a particular height of the liquid in the vessel. However, when an initial rotational velocity was imparted to the liquid, the height of liquid when air enters the drainpipe depends on the initial bath height. As the initial bath height increases, air enters the drainpipe at a progressively higher bath height. But surprisingly when the drain cover is put in place the initial bath height, again, has no effect on the height of the liquid (in the vessel).

Practical implications

The outcome of the present research work has direct implications for steel making. If the drainpipe can be connected to the ladle the way it has been discussed in this paper then more steel can be drained before stopping the drainage in order to avoid air or slag entrapment.

Originality/value

The idea of putting a drain cover, using a larger diameter drainpipe and making the drainpipe connection to the vessel different so as to delay the appearance of air at the drainpipe is a new finding and the idea can be used by steel makers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 November 2020

S. Madhu and M. Balasubramanian

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish…

Abstract

Purpose

The purpose of this study is for solving many issues in production that includes processing of complex-shaped profile, machining of high-strength materials, good surface finish with high-level precision and minimization of waste. Among the various advanced machining processes, abrasive jet machining (AJM) is one of the non-traditional machining techniques used for various applications such as polishing, deburring and hole making. Hence, an overview of the investigations done on carbon fiber-reinforced polymer (CFRP) and glass fiber-reinforced polymer (GRFP) composites becomes important.

Design/methodology/approach

Discussion on various approaches to AJM, the effect of process parameters on the glass fiber and carbon fiber polymeric composites are presented. Kerf characteristics, surface roughness and various nozzle design were also discussed.

Findings

It was observed that abrasive jet pressure, stand-off distance, traverse rate, abrasive size, nozzle diameter, angle of attack are the significant process parameters which affect the machining time, material removal rate, top kerf, bottom kerf and kerf angle. When the particle size is maximum, the increased kinetic energy of the particle improves the penetration depth on the CFRP surface. As the abrasive jet pressure is increased, the cutting process is enabled without severe jet deflection which in turn minimizes the waviness pattern, resulting in a decrease of the surface roughness.

Research limitations/implications

The review is limited to glass fiber and carbon fiber polymeric composites.

Practical implications

In many applications, the use of composite has gained wide acceptance. Hence, machining of the composite need for the study also has gained wide acceptance.

Social implications

The usage of composites reduces the usage of very costly materials of high density. The cost of the material also comes down.

Originality/value

This paper is a comprehensive review of machining composite with abrasive jet. The paper covers in detail about machining of only GFRP and CFRP composites with various nozzle designs, unlike many studies which has focused widely on general AJM of various materials.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 November 1956

J.R. Palmer

AT the present time turbojet aircraft types which are capable of level flight Mach numbers well into the supersonic range are appearing in increasing numbers. Yet, while this…

Abstract

AT the present time turbojet aircraft types which are capable of level flight Mach numbers well into the supersonic range are appearing in increasing numbers. Yet, while this represents in a sense a new phase in the evolution of piloted aircraft, from the point of view of the propulsion engineer it is rather the end of an era, in that hitherto the turbojet engines employed have been essentially subsonic engines suitably strengthened. Henceforth we may expect to see the use of engines specifically designed for the appropriate range of Mach number, and it is the purpose of this article to review some of the implications of this change of outlook in so far as they affect the prediction of engine performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 28 no. 11
Type: Research Article
ISSN: 0002-2667

1 – 10 of 43