Search results
1 – 10 of 329Xiaohong Lu, FuRui Wang, Liang Xue, Yixuan Feng and Steven Y. Liang
The purpose of this study is to realize the multi-objective optimization for MRR and surface roughness in micro-milling of Inconel 718.
Abstract
Purpose
The purpose of this study is to realize the multi-objective optimization for MRR and surface roughness in micro-milling of Inconel 718.
Design/methodology/approach
Taguchi method has been applied to conduct experiments, and the cutting parameters are spindle speed, feed per tooth and depth of cut. The first-order models used to predict surface roughness and MRR for micro-milling of Inconel 718 have been developed by regression analysis. Genetic algorithm has been utilized to implement multi-objective optimization between surface roughness and MRR for micro-milling of Inconel 718.
Findings
This paper implemented the multi-objective optimization between surface roughness and MRR for micro-milling of Inconel 718. And some conclusions can be summarized. Depth of cut is the major cutting parameter influencing surface roughness. Feed per tooth is the major cutting parameter influencing MRR. A number of cutting parameters have been obtained along with the set of pareto optimal solu-tions of MRR and surface roughness in micro-milling of Inconel 718.
Originality/value
There are a lot of cutting parameters affecting surface roughness and MRR in micro-milling, such as tool diameter, depth of cut, feed per tooth, spindle speed and workpiece material, etc. However, to the best our knowledge, there are no published literatures about the multi-objective optimization of surface roughness and MRR in micro-milling of Inconel 718.
Details
Keywords
M. P. Jenarthanan, A Ram Prakash and R Jeyapaul
The purpose of this paper is to develop a mathematical model for optimizing the metal removal rate (MRR) through Response Surface Methodology (RSM). The developed model…
Abstract
Purpose
The purpose of this paper is to develop a mathematical model for optimizing the metal removal rate (MRR) through Response Surface Methodology (RSM). The developed model helps us to analyze the influence of individual input machining parameters (cutting speed, feed rate, weight percentage) on the responses in machining of Al-TiB2 composite.
Design/methodology/approach
RSM is used to optimize the MRR by developing a mathematical model. Three factors, three-level box Behnken design matrix in RSM is employed to carry out the experimental investigation. The “Design Expert 8.0” software is used for regression and graphical analysis of the data are collected. The optimum values of the selected variables are obtained by solving the regression equation and by analyzing the response surface contour plots. Analysis of variance (ANOVA) is applied to check the validity of the model and for finding the significant parameters.
Findings
The response surface model developed, helps to calculate the MRR at different input cutting parameters with the chosen range with more than 95 per cent confidence intervals.
Originality/value
The effect of machining parameters on MRR during machining of Al-TiB2 composites using RSM has not been previously analyzed.
Details
Keywords
Dharmendra B.V., Shyam Prasad Kodali and Nageswara Rao Boggarapu
The purpose of this paper is to adopt the multi-objective optimization technique for identifying a set of optimum abrasive water jet machining (AWJM) parameters to achieve…
Abstract
Purpose
The purpose of this paper is to adopt the multi-objective optimization technique for identifying a set of optimum abrasive water jet machining (AWJM) parameters to achieve maximum material removal rate (MRR) and minimum surface roughness.
Design/methodology/approach
Data of a few experiments as per the Taguchi’s orthogonal array are considered for achieving maximum MRR and minimum surface roughness (Ra) of the Inconel718. Analysis of variance is performed to understand the statistical significance of AWJM input process parameters.
Findings
Empirical relations are developed for MRR and Ra in terms of the AWJM process parameters and demonstrated their adequacy through comparison of test results.
Research limitations/implications
The signal-to-noise ratio transformation should be applied to take in to account the scatter in the repetition of tests in each test run. But, many researchers have adopted this transformation on a single output response of each test run, which has no added advantage other than additional computational task. This paper explains the impact of insignificant process parameter in selection of optimal process parameters. This paper demands drawbacks and complexity in existing theories prior to use new algorithms.
Practical implications
Taguchi approach is quite simple and easy to handle optimization problems, which has no practical implications (if it handles properly). There is no necessity to hunt for new algorithms for obtaining solution for multi-objective optimization AWJM process.
Originality/value
This paper deals with a case study, which demonstrates the simplicity of the Taguchi approach in solving multi-objective optimization problems with a few number of experiments.
Details
Keywords
Ramesh S. and Jenarthanan M.P.
This study aims to focus on experimenting the performance of aluminum (Al) powder mixed electric discharge machining (PMEDM) of two different materials viz plastic mould…
Abstract
Purpose
This study aims to focus on experimenting the performance of aluminum (Al) powder mixed electric discharge machining (PMEDM) of two different materials viz plastic mould die steel (AISI P20) and nickel-based super alloy (Nimonic 75). This experimental study also focuses on using three different tool materials such as copper, brass and tungsten to analyze their influence on the process output. These materials find many uses in industrial as well as aerospace applications. The performance measures considered in this work are material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR).
Design/methodology/approach
The experimental design used in this work is based on Taguchi’s L18 orthogonal array. Besides considering work and tool material as one of the process variables, other process variables are peak current (Ip), pulse on time (Ton) and concentration of powder (Cp). The analysis of variance (ANOVA) is performed on the experimental data to determine the significant variables that influence the output.
Findings
It is found that copper produced maximum MRR and brass tool exhibited higher TWR. However, the surface finish of the machined work piece was very much improved by using the brass tool. Though the performance of tungsten tool lies between the above two tool materials, it showed very little wear during EDM with or without the addition of Al powder.
Originality/value
The experimental investigation of PMEDM of nickel-based super alloy (Nimonic 75) has not been attempted before. Besides that, the study on the influence of tungsten tool on the performance of EDM is also very limited.
Details
Keywords
Even though austenitic stainless steels have been extensively used in industries, owing to some of the characteristics of the material, its performance in machining is…
Abstract
Purpose
Even though austenitic stainless steels have been extensively used in industries, owing to some of the characteristics of the material, its performance in machining is difficult to understand, in particular at high cutting speeds. There is no availability of dependable and in-depth studies pertinent to this matter. In this work, performance of AISI 304 austenitic stainless steel was studied in terms of surface roughness (Ra) and material removal rate (MRR) at high cutting speeds. Subsequently, parametric optimization and prediction for responses were carried out.
Design/methodology/approach
Turning operations were conducted using L9 orthogonal array and the outcomes were analyzed to attain optimal set of machining parameters for the responses using signal-to-noise (S/N) ratio and Pareto analysis of variance (ANOVA). In the present work, the cutting speed values were considered beyond the recommended range as designated by tool manufacturers. Finally, multiple regression models were developed to predict responses.
Findings
From the results, 350 m/min was found to be a significant speed. The investigation reveals that even though the speeds are taken beyond the recommended values, the results are favorable. The optimal machining parameters values for surface quality obtained were cutting speed of 350 m/min, feed of 0.15 mm/rev and depth of cut of 2.0 mm. In case of MRR, the optimal values were: cutting speed of 400 m/min, feed of 0.25 mm/rev and depth of cut of 2.0 mm. It was found out that there was an improvement in Ra and MRR (around 15 and 4%) due to optimization. The results indicate that Pareto ANOVA is easier than S/N ratio. This revealed that the feed rate and depth of cut were mostly affected parameters for Ra and MRR. The developed models are capable of predicting the responses accurately.
Practical implications
The outcome of the work reveals that even though the speeds were taken beyond the recommended value, the results are favorable for manufacturing industries when the tool cost is considered insignificant.
Originality/value
No work was reported on machining of the chosen material beyond the recommended cutting speed. Moreover, it was observed from the past works that cutting speeds were limited to 100–300 m/min.
Details
Keywords
Naresh Kumar and Khushdeep Goyal
Wire electric discharge machining (WEDM) is a non-conventional machining process, which is used to provide difficult and intricate shapes. The purpose of this research…
Abstract
Purpose
Wire electric discharge machining (WEDM) is a non-conventional machining process, which is used to provide difficult and intricate shapes. The purpose of this research work is to apply Taguchi’s technique to optimize the process parameters in WEDM. Alloy steel 20MnCr5 has been selected as base material for experimentation. The effects of the input process parameters such as wire type, pulse-on time, pulse-off time, peak current, wire feed rate and servo voltage have been calculated on the material removal rate (MRR) and surface roughness (Ra) in WEDM operation.
Design/methodology/approach
In the research work, Taguchi's technique is applied to optimize the process parameters in WEDM.
Findings
ANOVA indicated that pulse-off time was the most significant factor for the MRR, and servo voltage was the most significant factor for surface roughness (SR). As a part of the project, 20MnCr5 was machined in wire electric discharge machine, and the optimal control parameters were found to get higher MRR and better SR using Taguchi’s technique.
Originality/value
To the best of authors’ knowledge, after reviewing the literature, materials including alloys of metals such as 16MnCr5 and 20MnCr5 have not been investigated so far, and research regarding machining of these materials is limited. Therefore, 20MnCr5 material has been selected for this research work to generate WEDM data.
Details
Keywords
Mayank Choubey, K.P. Maity and Abhishek Sharma
This research explores the finite element modeling of the crater and material removal rate (MRR) in micro-electrical discharge machining (micro-EDM) with and without…
Abstract
Purpose
This research explores the finite element modeling of the crater and material removal rate (MRR) in micro-electrical discharge machining (micro-EDM) with and without vibration of the workpiece. The application of workpiece vibration in the micro-EDM process improved flushing efficiency and enhanced material removal rate (MRR).
Design/methodology/approach
In this work, the two-dimensional axisymmetric finite element method (FEM) has been developed to predict the shape of the crater with and without vibration. The temperature distribution on the workpiece surface with and without vibration has been obtained in the form of the contour plot.
Findings
The MRR obtained from the numerical model revealed that there was an enhancement in MRR in micro-EDM with vibration as compared to without vibration. The effect of process parameters on MRR in micro-EDM with and without is also presented in this work.
Originality/value
In this work, the two-dimensional axisymmetric FEM model has been developed to predict the shape of the crater with and without vibration.
Details
Keywords
Shankar Chakraborty, Prasenjit Chatterjee and Partha Protim Das
To meet the requirements of high-dimensional accuracy and surface finish of various advanced engineering materials for generating intricate part geometries…
Abstract
Purpose
To meet the requirements of high-dimensional accuracy and surface finish of various advanced engineering materials for generating intricate part geometries, non-traditional machining (NTM) processes have now become quite popular in manufacturing industries. To explore the fullest machining capability of these NTM processes, it is often required to operate them while setting their different controllable parameters at optimal levels. This paper aims to present a novel approach for selection of the optimal parametric mixes for different NTM processes in order to assist the concerned process engineers.
Design/methodology/approach
In this paper, design of experiments (DoE) and technique for order preference by similarity to ideal solution (TOPSIS) are combined to develop the corresponding meta-models for identifying the optimal parametric combinations of two NTM processes, i.e. electrical discharge machining (EDM) and wire electrical discharge machining (WEDM) processes with respect to the computed TOPSIS scores.
Findings
For EDM operation on Inconel 718 alloy, lower settings of open circuit voltage and pulse-on time and higher settings of peak current, duty factor and flushing pressure will simultaneously optimize all the six responses. On the other hand, for the WEDM process, the best machining performance can be expected to occur at a parametric combination of zinc-coated wire, lower settings of pulse-on time, wire feed rate and sensitivity and intermediate setting of pulse-off time.
Practical implications
As the development of these meta-models is based on the analysis of the experimental data, they are expected to be more practical, being immune to the introduction of additional parameters in the analysis. It is also observed that the derived optimal parametric settings would provide better values of the considered responses as compared to those already determined by past researchers.
Originality/value
This DoE–TOPSIS method-based approach can be applied to varieties of NTM as well as conventional machining processes to determine the optimal parametric combinations for having their improved machining performance.
Details
Keywords
Akhil Khajuria, Modassir Akhtar, Manish Kumar Pandey, Mayur Pratap Singh, Ankush Raina, Raman Bedi and Balbir Singh
AA2014 is a copper-based alloy and is typically used for production of complex machined components, given its better machinability. The purpose of this paper was to study…
Abstract
Purpose
AA2014 is a copper-based alloy and is typically used for production of complex machined components, given its better machinability. The purpose of this paper was to study the effects of variation in weight percentage of ceramic Al2O3 particulates during electrical discharge machining (EDM) of stir cast AA2014 composites. Scanning electron microscopy (SEM) examination was carried out to study characteristics of EDMed surface of Al2O3/AA2014 composites.
Design/methodology/approach
The effect of machining parameters on performance measures during sinker EDM of stir cast Al2O3/AA2014 composites was examined by “one factor at a time” (OFAT) method. The stir cast samples were obtained by using three levels of weight percentage of Al2O3 particulates, i.e. 0 Wt.%, 10 Wt.% and 20 Wt.% with density 1.87 g/cc, 2.35 g/cc and 2.98 g/cc respectively. Machining parameters varied were peak current (1-30 amp), discharge voltage (30-100 V), pulse on time (15-300 µs) and pulse off time (15-450 µs) to study their influence on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR).
Findings
MRR and SR decreased with an increase in weight percentage of ceramic Al2O3 particulates at the expense of TWR. This was attributed to increased microhardness for reinforced stir cast composites. However, microhardness of EDMed samples at fixed values of machining parameters, i.e. 9 amp current, 60 V voltage, 90 µs pulse off time and 90 µs pulse on time reduced by 58.34, 52.25 and 46.85 per cent for stir cast AA2014, 10 Wt.% Al2O3/AA2014 and 20 Wt.% Al2O3/AA2014, respectively. SEM and quantitative energy dispersive spectroscopy (EDS) analysis revealed ceramic Al2O3 particulate thermal spalling in 20 Wt.% Al2O3/AA2014 composite. This was because of increased particulate weight percentage leading to steep temperature gradients in between layers of base material and heat affected zone.
Originality/value
This work was an essential step to assess the machinability for material design of Al2O3 reinforced aluminium metal matrix composites (AMMCs). Experimental investigation on sinker EDM of high weight fraction of particulates in AA2014, i.e. 10 Wt.% Al2O3 and 20 Wt.% Al2O3, has not been reported in archival literature. The AMMCs were EDMed at variable peak currents, voltages, pulse on and pulse off times. The effects of process parameters on MRR, TWR and SR were analysed with comparisons made to show the effect of Al2O3 particulate contents.
Details
Keywords
Husandeep Sharma, Khushdeep Goyal and Sunil Kumar
Tool steel (AISI D3) is a preferred material for industrial usage. Some of the typical applications of D3 tool steel are blanking and forming dies, forming rolls, press…
Abstract
Purpose
Tool steel (AISI D3) is a preferred material for industrial usage. Some of the typical applications of D3 tool steel are blanking and forming dies, forming rolls, press tools and punches bushes. It is used under conditions where high resistance to wear or to abrasion is required and also for resistance to heavy pressure rather than to sudden shock is desirable. It is a high carbon and high chromium steel. Therefore, wire electric discharge machining (WEDM) is used to machine this tool steel. The paper aims to discuss these issues.
Design/methodology/approach
The present experimental investigation evaluates the influence of cryogenically treated wires on material removal rate (MRR) and surface roughness (SR) for machining of AISI D3 steel using the WEDM process. Two important process responses MRR and SR have been studied as a function of four different control parameters, namely pulse width, time between two pulses, wire mechanical tension and wire feed rate.
Findings
It was found that pulse width was the most significant parameter which affects the MRR and SR. Better surface finish was obtained with cryogenically treated zinc coated wire than brass wire.
Originality/value
The review of the literature indicates that there is limited published work on the effect of machining parameters in WEDM in cryogenic treated wires. Therefore, in this research work, it was decided to evaluate the effect of cryogenically treated wires on WEDM.
Details