Search results

1 – 10 of 591
Article
Publication date: 16 May 2019

Xiaohong Lu, FuRui Wang, Liang Xue, Yixuan Feng and Steven Y. Liang

The purpose of this study is to realize the multi-objective optimization for MRR and surface roughness in micro-milling of Inconel 718.

Abstract

Purpose

The purpose of this study is to realize the multi-objective optimization for MRR and surface roughness in micro-milling of Inconel 718.

Design/methodology/approach

Taguchi method has been applied to conduct experiments, and the cutting parameters are spindle speed, feed per tooth and depth of cut. The first-order models used to predict surface roughness and MRR for micro-milling of Inconel 718 have been developed by regression analysis. Genetic algorithm has been utilized to implement multi-objective optimization between surface roughness and MRR for micro-milling of Inconel 718.

Findings

This paper implemented the multi-objective optimization between surface roughness and MRR for micro-milling of Inconel 718. And some conclusions can be summarized. Depth of cut is the major cutting parameter influencing surface roughness. Feed per tooth is the major cutting parameter influencing MRR. A number of cutting parameters have been obtained along with the set of pareto optimal solu-tions of MRR and surface roughness in micro-milling of Inconel 718.

Originality/value

There are a lot of cutting parameters affecting surface roughness and MRR in micro-milling, such as tool diameter, depth of cut, feed per tooth, spindle speed and workpiece material, etc. However, to the best our knowledge, there are no published literatures about the multi-objective optimization of surface roughness and MRR in micro-milling of Inconel 718.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 October 2015

M. P. Jenarthanan, A Ram Prakash and R Jeyapaul

The purpose of this paper is to develop a mathematical model for optimizing the metal removal rate (MRR) through Response Surface Methodology (RSM). The developed model…

Abstract

Purpose

The purpose of this paper is to develop a mathematical model for optimizing the metal removal rate (MRR) through Response Surface Methodology (RSM). The developed model helps us to analyze the influence of individual input machining parameters (cutting speed, feed rate, weight percentage) on the responses in machining of Al-TiB2 composite.

Design/methodology/approach

RSM is used to optimize the MRR by developing a mathematical model. Three factors, three-level box Behnken design matrix in RSM is employed to carry out the experimental investigation. The “Design Expert 8.0” software is used for regression and graphical analysis of the data are collected. The optimum values of the selected variables are obtained by solving the regression equation and by analyzing the response surface contour plots. Analysis of variance (ANOVA) is applied to check the validity of the model and for finding the significant parameters.

Findings

The response surface model developed, helps to calculate the MRR at different input cutting parameters with the chosen range with more than 95 per cent confidence intervals.

Originality/value

The effect of machining parameters on MRR during machining of Al-TiB2 composites using RSM has not been previously analyzed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 25 August 2021

Neeraj Sharma, Rahul Dev Gupta, Rajesh Khanna, Rakesh Chandmal Sharma and Yogesh Kumar Sharma

The purpose of this paper is to investigate the optimized setting of wire-cut electrical discharge machining (WEDM) parameters at which material removal rate (MRR) and…

Abstract

Purpose

The purpose of this paper is to investigate the optimized setting of wire-cut electrical discharge machining (WEDM) parameters at which material removal rate (MRR) and mean roughness depth (Rz) set a compromise. The problem in the processing of Ti-6Al-4V by conventional processes is a high strength, high hardness, high tool wear. Due to which WEDM is adopted to machine Ti-6Al-4V biomedical alloy. Ti-6Al-4V alloy has a number of applications in the engineering and medical industries due to its high strength biocompatibility.

Design/methodology/approach

The effect of control factors (i.e. pulse on-time: Pon; pulse off-time: Poff; servo voltage: SV) on the MRR and Rz is investigated in the present research. The planning of experiments is done using a Taguchi-based L9 orthogonal array. The percentage influence of each factor on responses is also evaluated. The multi-objective optimization is done using the grey approach initially. After that, the results were also calculated using harmony search (HS). Therefore, a hybrid approach of grey and HS is used to find the optimized values of MRR and Rz.

Findings

The maximum value of grade calculated by grey-HS is 0.7879, while in the case of the experimental run the maximum value of grey grade is 0.7239. The optimized setting after improvisation at this grade value is Pon: 130 µs; Poff: 45 µs and SV: 70 V for MRR and Rz collectively. The validation of the suggested setting is completed by experimentation. The values of MRR and Rz are coming out to be 6.4 mm3/min and 13.84 µm, which represents improvised results after the implementation of the HS algorithm.

Originality/value

The integration of the grey approach with the HS principle in the manufacturing domain is yet to be explored. Therefore, in the present research hybrid approach of grey-HS is implemented in the manufacturing domain having applications in medical industries.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 June 2021

M. Balasubramanian and S. Madhu

The purpose of the study is to machine the composites at lower machining time with higher accuracy without causing delamination.

Abstract

Purpose

The purpose of the study is to machine the composites at lower machining time with higher accuracy without causing delamination.

Design/methodology/approach

Abrasive jet machining is the technology appropriate for machining composite materials to obtain good dimensional accuracy without causing de-lamination. The central composite design was followed in deciding the number of experiments to be carried out.

Findings

The influence of abrasive jet machining process parameters on machining time, material removal rate (MRR) and kerf characteristics were investigated. The experimental results proved the newly designed internal threaded nozzle increased MRR, thereby reducing the machining time.

Originality/value

Machining of glass fibre reinforced polymer (GFRP) is one of the challenging tasks given its non-linear and in-homogeneous properties. In this investigation, newly developed threaded and unthreaded nozzles in machining were used for making holes on the GFRP composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 October 2019

Dharmendra B.V., Shyam Prasad Kodali and Nageswara Rao Boggarapu

The purpose of this paper is to adopt the multi-objective optimization technique for identifying a set of optimum abrasive water jet machining (AWJM) parameters to achieve…

Abstract

Purpose

The purpose of this paper is to adopt the multi-objective optimization technique for identifying a set of optimum abrasive water jet machining (AWJM) parameters to achieve maximum material removal rate (MRR) and minimum surface roughness.

Design/methodology/approach

Data of a few experiments as per the Taguchi’s orthogonal array are considered for achieving maximum MRR and minimum surface roughness (Ra) of the Inconel718. Analysis of variance is performed to understand the statistical significance of AWJM input process parameters.

Findings

Empirical relations are developed for MRR and Ra in terms of the AWJM process parameters and demonstrated their adequacy through comparison of test results.

Research limitations/implications

The signal-to-noise ratio transformation should be applied to take in to account the scatter in the repetition of tests in each test run. But, many researchers have adopted this transformation on a single output response of each test run, which has no added advantage other than additional computational task. This paper explains the impact of insignificant process parameter in selection of optimal process parameters. This paper demands drawbacks and complexity in existing theories prior to use new algorithms.

Practical implications

Taguchi approach is quite simple and easy to handle optimization problems, which has no practical implications (if it handles properly). There is no necessity to hunt for new algorithms for obtaining solution for multi-objective optimization AWJM process.

Originality/value

This paper deals with a case study, which demonstrates the simplicity of the Taguchi approach in solving multi-objective optimization problems with a few number of experiments.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 April 2018

Ramesh S. and Jenarthanan M.P.

This study aims to focus on experimenting the performance of aluminum (Al) powder mixed electric discharge machining (PMEDM) of two different materials viz plastic mould…

Abstract

Purpose

This study aims to focus on experimenting the performance of aluminum (Al) powder mixed electric discharge machining (PMEDM) of two different materials viz plastic mould die steel (AISI P20) and nickel-based super alloy (Nimonic 75). This experimental study also focuses on using three different tool materials such as copper, brass and tungsten to analyze their influence on the process output. These materials find many uses in industrial as well as aerospace applications. The performance measures considered in this work are material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR).

Design/methodology/approach

The experimental design used in this work is based on Taguchi’s L18 orthogonal array. Besides considering work and tool material as one of the process variables, other process variables are peak current (Ip), pulse on time (Ton) and concentration of powder (Cp). The analysis of variance (ANOVA) is performed on the experimental data to determine the significant variables that influence the output.

Findings

It is found that copper produced maximum MRR and brass tool exhibited higher TWR. However, the surface finish of the machined work piece was very much improved by using the brass tool. Though the performance of tungsten tool lies between the above two tool materials, it showed very little wear during EDM with or without the addition of Al powder.

Originality/value

The experimental investigation of PMEDM of nickel-based super alloy (Nimonic 75) has not been attempted before. Besides that, the study on the influence of tungsten tool on the performance of EDM is also very limited.

Details

World Journal of Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 18 September 2017

Kanwal Jeet Singh, Inderpreet Singh Ahuja and Jathinder Kapoor

The purpose of this paper, an original research paper, is to study the optimization of material removal rate (MRR) in ultrasonic machining of polycarbonate bulletproof…

227

Abstract

Purpose

The purpose of this paper, an original research paper, is to study the optimization of material removal rate (MRR) in ultrasonic machining of polycarbonate bulletproof glass and acrylic heat-resistant glass. The machining of these materials is a very tough job. There are so many constraints which need to be taken into account while machining, but without proper knowledge of material properties and machining parameters, machining is not possible. This paper gives basic knowledge about polycarbonate bulletproof and acrylic heat-resistant glass and provides ways as to how these types of materials are processed or machined.

Design/methodology/approach

The Taguchi method was utilized to optimize the ultrasonic machining parameters for drilling these advanced materials. The relationship between MRR and other controllable process parameters such as concentration of slurry, type of abrasive, abrasive grit size, power rating, concentration of HF acid and type of tool material has been analyzed by using the Taguchi approach.

Findings

Through the Taguchi analysis, it is concluded that types of abrasive and HF acid concentrations have a significant role to play in MRR for both materials; in which, type of abrasive have 72.91 and 72.96 percent contribution in MRR for polycarbonate bulletproof and acrylic heat-resistant glass, respectively. Similarly, HF acid concentration has 14.70 and 14.65 percent contribution in MRR for polycarbonate bulletproof and acrylic heat-resistant glass, respectively. The MRR was improved by 34.44 percent in polycarbonate bulletproof glass and 29.25 percent in acrylic heat-resistant glass.

Originality/value

After experimental investigation, the results of the Taguchi modal are validated.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 April 2018

Ramesh S., M.P. Jenarthanan and Bhuvanesh Kanna A.S.

The purpose of this paper is to investigate the performance of powder-mixed electric discharge machining (PMEDM) using three different powders which are aluminium (Al)…

Abstract

Purpose

The purpose of this paper is to investigate the performance of powder-mixed electric discharge machining (PMEDM) using three different powders which are aluminium (Al), silicon carbide (SiC) and aluminium oxide (Al2O3). Besides that, the influence of different tool materials was also studied in this experimental investigation. Hence, the work material selected for this purpose was AISI P20 steel and tool materials were copper, brass and tungsten. The performance measures considered in this work were material removal rate (MRR), tool wear rate and radial over cut (ROC).

Design/methodology/approach

The process variables considered in this study were powder types, powder concentration, tool materials, peak current and pulse on time. The experimental design, based on Taguchi’s L27 orthogonal array, was adopted to conduct experiments. Significant parameters were identified by performing the analysis of variance on the experimental data.

Findings

Based on the analysis of results, it was observed that copper tool combined with Al powder produced maximum MRR (58.35 mm3/min). Similarly, the Al2O3 powder combined with tungsten tool has resulted least ROC (0.04865 mm). It was also observed that wear rate of tungsten tool was very low (0.0145 mm3/min).

Originality/value

The experimental investigation of PMEDM involving three different powders (Al, SiC and Al2O3) was not attempted before. Moreover, the study of influence of different tool materials (Cu, brass and W) together with the different powders on the electric discharge machining performance was very limited.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 May 2019

Shankar Chakraborty, Prasenjit Chatterjee and Partha Protim Das

To meet the requirements of high-dimensional accuracy and surface finish of various advanced engineering materials for generating intricate part geometries…

Abstract

Purpose

To meet the requirements of high-dimensional accuracy and surface finish of various advanced engineering materials for generating intricate part geometries, non-traditional machining (NTM) processes have now become quite popular in manufacturing industries. To explore the fullest machining capability of these NTM processes, it is often required to operate them while setting their different controllable parameters at optimal levels. This paper aims to present a novel approach for selection of the optimal parametric mixes for different NTM processes in order to assist the concerned process engineers.

Design/methodology/approach

In this paper, design of experiments (DoE) and technique for order preference by similarity to ideal solution (TOPSIS) are combined to develop the corresponding meta-models for identifying the optimal parametric combinations of two NTM processes, i.e. electrical discharge machining (EDM) and wire electrical discharge machining (WEDM) processes with respect to the computed TOPSIS scores.

Findings

For EDM operation on Inconel 718 alloy, lower settings of open circuit voltage and pulse-on time and higher settings of peak current, duty factor and flushing pressure will simultaneously optimize all the six responses. On the other hand, for the WEDM process, the best machining performance can be expected to occur at a parametric combination of zinc-coated wire, lower settings of pulse-on time, wire feed rate and sensitivity and intermediate setting of pulse-off time.

Practical implications

As the development of these meta-models is based on the analysis of the experimental data, they are expected to be more practical, being immune to the introduction of additional parameters in the analysis. It is also observed that the derived optimal parametric settings would provide better values of the considered responses as compared to those already determined by past researchers.

Originality/value

This DoE–TOPSIS method-based approach can be applied to varieties of NTM as well as conventional machining processes to determine the optimal parametric combinations for having their improved machining performance.

Details

Journal of Modelling in Management, vol. 14 no. 2
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 16 July 2019

Akhil Khajuria, Modassir Akhtar, Manish Kumar Pandey, Mayur Pratap Singh, Ankush Raina, Raman Bedi and Balbir Singh

AA2014 is a copper-based alloy and is typically used for production of complex machined components, given its better machinability. The purpose of this paper was to study…

Abstract

Purpose

AA2014 is a copper-based alloy and is typically used for production of complex machined components, given its better machinability. The purpose of this paper was to study the effects of variation in weight percentage of ceramic Al2O3 particulates during electrical discharge machining (EDM) of stir cast AA2014 composites. Scanning electron microscopy (SEM) examination was carried out to study characteristics of EDMed surface of Al2O3/AA2014 composites.

Design/methodology/approach

The effect of machining parameters on performance measures during sinker EDM of stir cast Al2O3/AA2014 composites was examined by “one factor at a time” (OFAT) method. The stir cast samples were obtained by using three levels of weight percentage of Al2O3 particulates, i.e. 0 Wt.%, 10 Wt.% and 20 Wt.% with density 1.87 g/cc, 2.35 g/cc and 2.98 g/cc respectively. Machining parameters varied were peak current (1-30 amp), discharge voltage (30-100 V), pulse on time (15-300 µs) and pulse off time (15-450 µs) to study their influence on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR).

Findings

MRR and SR decreased with an increase in weight percentage of ceramic Al2O3 particulates at the expense of TWR. This was attributed to increased microhardness for reinforced stir cast composites. However, microhardness of EDMed samples at fixed values of machining parameters, i.e. 9 amp current, 60 V voltage, 90 µs pulse off time and 90 µs pulse on time reduced by 58.34, 52.25 and 46.85 per cent for stir cast AA2014, 10 Wt.% Al2O3/AA2014 and 20 Wt.% Al2O3/AA2014, respectively. SEM and quantitative energy dispersive spectroscopy (EDS) analysis revealed ceramic Al2O3 particulate thermal spalling in 20 Wt.% Al2O3/AA2014 composite. This was because of increased particulate weight percentage leading to steep temperature gradients in between layers of base material and heat affected zone.

Originality/value

This work was an essential step to assess the machinability for material design of Al2O3 reinforced aluminium metal matrix composites (AMMCs). Experimental investigation on sinker EDM of high weight fraction of particulates in AA2014, i.e. 10 Wt.% Al2O3 and 20 Wt.% Al2O3, has not been reported in archival literature. The AMMCs were EDMed at variable peak currents, voltages, pulse on and pulse off times. The effects of process parameters on MRR, TWR and SR were analysed with comparisons made to show the effect of Al2O3 particulate contents.

Details

World Journal of Engineering, vol. 16 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 591