Search results

1 – 10 of over 1000
Article
Publication date: 23 February 2024

Guangwei Liang, Zhiming Gao, Cheng-Man Deng and Wenbin Hu

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of…

Abstract

Purpose

The purpose of this study is to reveal the effect of nano-Al2O3 particle addition on the nucleation/growth kinetics, microhardness, wear resistance and corrosion resistance of Co–P–xAl2O3 nanocomposite plating.

Design/methodology/approach

The kinetics and properties of Co–P–xAl2O3 nanocomposite plating prepared by electroplating were investigated by electrochemical measurements, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Vickers microhardness measurement, SRV5 friction and wear tester and atomic force microscopy.

Findings

A 12 g/L nano-Al2O3 addition in the plating solution can transform the nucleation/growth kinetics of the plating from the 3D progressive model to the 3D instantaneous model. The microhardness of the plating increased with the increase of nano-Al2O3 content in plating. The wear resistance of the plating did not adhere strictly to Archard’s law. An even and denser corrosion product film was generated due to the finer grains, with a high corrosion resistance.

Originality/value

The effect of different nano-Al2O3 addition on the nucleation/growth kinetics and properties of Co–P–xAl2O3 nanocomposite plating was investigated, and an anticorrosion mechanism of Co–P–xAl2O3 nanocomposite plating was proposed.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 13 July 2023

Abdul Lateef, Zulfiqar Ali Raza, Muhammad Aslam, Muhammad Shoaib Ur Rehman, Asma Iftikhar and Abdul Zahir

This study aims to fabricate multiwalled carbon nanotubes (MWCNTs)-mediated polyvinyl alcohol (PVA) composite films using the solution casting approach.

Abstract

Purpose

This study aims to fabricate multiwalled carbon nanotubes (MWCNTs)-mediated polyvinyl alcohol (PVA) composite films using the solution casting approach.

Design/methodology/approach

The prepared films were evaluated for diverse structural, surface, optical and electrical attributes using advanced analytical techniques, i.e. electron microscopy for surface morphology, Fourier transform infrared spectroscopy for tracing chemical functionalities, x-ray diffraction (XRD) for crystal patterns, water contact angle (WCA) analysis for surface wettability and UV visible spectroscopy for optical absorption parameters. The specimens were also investigated for certain rheological, mechanical and electrical properties, where applicable.

Findings

The surface morphology results expressed a better dispersion of MWCNTs in the resultant PVA-based nanocomposite film. The XRD analysis exhibited that the nanocomposite film was crystalline. The surface wettability analysis indicated that with the inclusion of MWCNTs, the WCA of the resultant nanocomposite film improved to 89.4° from 44° with the pristine PVA film. The MWCNTs (1.00%, w/w) incorporated PVA-based film exhibited a tensile strength of 54.0 MPa as compared to that of native PVA as 25.3 MPa film. There observed a decreased bandgap (from 5.25 to 5.14 eV) on incorporating the MWCNTs in the PVA-based nanocomposite film.

Practical implications

The MWCNTs’ inclusion in the PVA matrix could enhance the AC conductivity of the resultant nanocomposite film. The prepared nanocomposite film might be useful in designing certain optoelectronic devices.

Originality/value

The results demonstrated the successful MWCNTs mediation in the PVA-based composite films expressed good intercalation of the precursors; this resulted in decreased bandgap, usually, desirable for optoelectronic applications.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 January 2022

Ali Shams Nateri and Laleh Asadi

The purpose of this study is evaluate the optical properties of polyacrylonitrile (PAN) nanofibers containing fluorescent agents such as fluorescent dye and carbon quantum dots…

77

Abstract

Purpose

The purpose of this study is evaluate the optical properties of polyacrylonitrile (PAN) nanofibers containing fluorescent agents such as fluorescent dye and carbon quantum dots (CQDs) by using image-processing technique of Fluorescence microscope image.

Design/methodology/approach

The fluorescence microscope image of the pure PAN, PAN/CQDs and PAN/fluorescent dye nanofibers composite was analyzed using several image-processing techniques such as color histogram, lookup table (LUT), Fourier transform, RGB profile and surface plot analysis.

Findings

The fluorescence microscope image indicates that the fluorescence emission of nanocomposites depends on the type of fluorescent agent. The fluorescence intensity of nanofiber containing CQDs is more than nanofiber containing fluorescent dye. Various image-processing methods provide similar results for optical property of nanocomposites. Analyzing the LUT, the blue value of CQDs/PAN nanocomposite image was significantly higher than other nanocomposites. This was confirmed by other methods such as Fourier transform, color histogram and 3D topography of the electrospun nanofibers. According to analysis of colorimetric parameters, higher negative value of b* indicates bluer color for CQDs/PAN nanofibers than other nanocomposites. The obtained results indicate that the image-processing technique can be used to evaluate the optical property of fluorescent nanocomposite.

Originality/value

This study evaluates the optical properties of fluorescent nanocomposites by using image-processing techniques such as Fourier transform, color histogram, RGB profiles, LUT, surface plot and histogram analysis.

Details

Pigment & Resin Technology, vol. 52 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 September 2015

Ankita Pritam Praharaj, Dibakar Behera, Tapan Kumar Bastia and Arun Kumar Rout

This paper aims to focus on the development and study properties of bisphenol-A glycidyldimethacrylate (BisGMA) and ethylene–propylene–diene monomer (EPDM) blend-based…

Abstract

Purpose

This paper aims to focus on the development and study properties of bisphenol-A glycidyldimethacrylate (BisGMA) and ethylene–propylene–diene monomer (EPDM) blend-based nanocomposites containing amine-functionalised multi-walled carbon nanotubes (MWCNT-NH2) as a compatibiliser.

Design/methodology/approach

First, BisGMA was synthesised from epoxy and methacrylic acid followed by the amine functionalisation of MWCNTs. A novel two-roll milling technique was then conducted to prepare nanocomposite specimens with MWCNT-NH2 as compatibiliser. Effect of MWCNT-NH2 content on the mechanical, thermal, electrical, corrosive and water absorption properties of the nanocomposites was investigated and results have been reported.

Findings

The results of the present work reveal that MWCNT-NH2 acts as a potential compatibiliser and nanofiller in BisGMA/EPDM blend-based nanocomposites. The authors report here that the nanocomposites exhibit improved mechanical, thermal and electrical properties with increased addition of MWCNT-NH2. Moreover, desirable results are obtained at 5 phr of nanofiller loading beyond which the properties deteriorate due to particle agglomeration. The nanocomposites display negligible corrosion and water absorption characteristics. Thus, the above fabricated nanocomposites with optimum compatibiliser content can serve as low-cost structural, thermal and electrical materials which can also be utilised in corrosive and moist environments.

Research limitations/implications

The present investigation has come up with the successful and cost-effective fabrication of BisGMA/EPDM blend-based nanocomposites with optimum nanofiller/compatibiliser (MWCNT-NH2) content that can be used for a wide range of structural, thermal and electrical projects, as it is corrosion and moisture resistant. It is also the most durable from the mechanical point of view.

Originality/value

The above nanocomposites have never been designed before.

Details

Pigment & Resin Technology, vol. 44 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 September 2015

Omar Alhartomy

The aim of this study is to investigate the humidity-sensing of polyaniline–zinc oxide (PANI–ZnO) nanocomposites. Humidity sensor has wide applications in drug industries, food…

Abstract

Purpose

The aim of this study is to investigate the humidity-sensing of polyaniline–zinc oxide (PANI–ZnO) nanocomposites. Humidity sensor has wide applications in drug industries, food industries and domestic purpose to regulate the humidity level.

Design/methodology/approach

PANI–ZnO composites were prepared by in situ polymerization method, and further humidity response was tested by using a two-probe sensor setup.

Findings

PANI-ZnO composites surface were modified by using camphor sulphonic acid. DC conductivity is due to the hopping of polorans. Thermal coefficient value varies from 1.7 to 2.3. The 30 weight per cent composite shows high sensitivity among other composites.

Research limitations/implications

These composites can be used only at room temperature or moderate temperature, i.e. below 280°C.

Practical implications

The composites are prepared in tetrapod shape that has a large surface area and more stability. Therefore, these materials would be the replacement for conventional materials.

Social implications

These sensors have many applications in food and drug preservation, domestic purposes, etc.

Originality/value

This work is original, and not being considered for publication elsewhere. In this work, the charge transport properties were evaluated based on the resistivity change when samples were exposed to humidity.

Details

Sensor Review, vol. 35 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 2 January 2018

Yongkun Wang, Tianran Ma, Wenchao Tian, Junjue Ye, Xing Wang and Xiangjun Jiang

The purpose of this paper is to prepare novel electroactive shape memory nanocomposites based on graphene and study the thermomechanical property and shape memory behavior of…

Abstract

Purpose

The purpose of this paper is to prepare novel electroactive shape memory nanocomposites based on graphene and study the thermomechanical property and shape memory behavior of nanocomposites.

Design/methodology/approach

Graphene was dispersed in N,N-dimethylformamide, and the mixture was spooned into epoxy-cyanate ester mixtures to form graphene/epoxy-cyanate ester nanocomposites. The nanocomposites were deformed under 150°C, and shape recovery test was conducted under an electric voltage of 20-100 V.

Findings

Graphene is used to improve the shape recovery behavior and performance of shape-memory polymers (SMPs) for enhanced electrical actuation effectiveness. With increment of graphene content, the shape recovery speed of nanocomposites increases significantly.

Research limitations/implications

A simple way for fabricating electro-activated SMP nanocomposites has been developed by using graphene.

Originality/value

The outcome of this study will help to fabricate the SMP nanocomposites with high electrical actuation effectiveness and improve the shape recovery speed of the nanocomposites.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 January 2016

Baskar Gurunathan, Dhanusree Viswanathan, Shravanthi Rajasekar and Garrick Bikku George

The purpose of this paper is to focus on the removal of Congo red dye from aqueous solution using magnetically separable novel adsorbent prepared by coating activated charcoal on…

Abstract

Purpose

The purpose of this paper is to focus on the removal of Congo red dye from aqueous solution using magnetically separable novel adsorbent prepared by coating activated charcoal on magnetic nanoparticles.

Design/methodology/approach

The synthesized magnetic nanocomposite of activated charcoal was characterized using Fourier transform infra-red (FTIR), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) analysis. The removal of Congo red from aqueous solution using magnetic nanocomposite of activated charcoal was optimized. The equilibrium and kinetics modeling of adsorption of Congo red was analyzed.

Findings

The presence of activated charcoal on magnetic nanocomposite was confirmed by FTIR analysis. The average size of the nanocomposite was found to be 12.77 nm using SEM characterization. The elemental composition by EDS analysis confirmed the increase in concentration of carbon due the adsorption of Congo red dye. The optimum conditions for batch adsorption was found to be 1 g/L of adsorbent, dye concentration 50 mg/L, pH 3 and temperature 70°C. The adsorption of Congo red dye on magnetic nanocomposite of activated charcoal was found to follow Temkin adsorption isotherm.

Originality/value

The experimental data were found to fit well with the pseudo second-order kinetics and the rate of adsorption was found to be controlled by intra-particle diffusion.

Details

Management of Environmental Quality: An International Journal, vol. 27 no. 1
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 2 January 2018

Behnam Abdollahi, Daryoush Afzali and Zahra Hassani

SiO2 and SiO2-ZrO2 nanocomposites were coated by sol–gel dipping method on carbon steel 178 (178 CS). Nanostructure and phase properties of nanocomposite coating were…

277

Abstract

Purpose

SiO2 and SiO2-ZrO2 nanocomposites were coated by sol–gel dipping method on carbon steel 178 (178 CS). Nanostructure and phase properties of nanocomposite coating were characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared studies. Electrochemical polarization and electrochemical impedance spectroscopy (EIS) tests were used to study the corrosion behavior of 178 CS that was coated with SiO2-ZrO2 nanocomposite and SiO2 coating in 3.5 per cent NaCl solution. The results indicated that SiO2-ZrO2 nanocomposite coating performed better in terms of corrosion resistance compared with SiO2 coating. The corrosion resistance of SiO2-ZrO2 nanocomposite coating could be increased significantly in by approximately three and seven times of that of SiO2 coating and bare 178 CS, respectively.

Design/methodology/approach

SiO2 and SiO2-ZrO2 nanocomposites were coated using sol–gel dipping method on carbon steel 178. Electrochemical polarization and EIS tests have been used to study the corrosion behavior of 178 CS that was coated with SiO2-ZrO2 nanocomposite and SiO2 coating in 3.5 per cent NaCl solution.

Findings

Results indicated that SiO2-ZrO2 nanocomposite coating performed better in terms of corrosion resistance compared with SiO2 coating. The corrosion resistance of SiO2-ZrO2 nanocomposite coating could be increased significantly in by approximately three and seven times of that of SiO2 coating and bare 178 CS, respectively.

Originality/value

The SiO2-ZrO2 nanocomposite coating film showed significant improvement in corrosion resistance of 178 CS. The highest polarization resistance of the nanocomposite coating film was 10,600 Ω/cm2 from SiO2-0.2 ZrO2.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 March 2018

Shiva Akhtarian, Hadi Veladi and Sajedeh Mohammadi Aref

The purpose of the study is to explore the potential possibility of using the conductive and piezoresistive nanocomposites that consist of insulating poly(dimethylsiloxane), a…

Abstract

Purpose

The purpose of the study is to explore the potential possibility of using the conductive and piezoresistive nanocomposites that consist of insulating poly(dimethylsiloxane), a very popular silicone polymer, and the amazing properties of carbon nanotubes (CNT) in sensing applications. This nanocomposite is prepared by an optimized process to achieve a high-quality nanocomposite with uniform properties.

Design/methodology/approach

The optimized process achieved in this study to provide PDMS/CNT nanocomposite includes the appropriate use of ultrasonic bath, magnetic stirrer, molding and curing in certain circumstances that results in obtaining high-quality nanocomposite with uniform properties. Experiments to characterize the influence of some factors such as pressure, temperature and the impact of CNT’s concentration on the electrical properties of the prepared nanocomposite have been designed and carried out.

Findings

The obtained preparing method of this nanocomposite is found to have better homogeneity in comparison to other methods for CNT/PDMS nanocomposite. This nanocomposite has both desirable properties of the PDMS elastomer and the additional conductive CNT, and it can be used to create all-polymer systems. Furthermore, the conductivity values of these nanocomposites can be changed by varying some factors such as temperature and pressure, so that those can be used in temperature- and pressure-sensoring applications.

Originality/value

In the present research, a convenient, inexpensive and reproducible method for preparing CNT/PDMS nanocomposite was investigated. These nanocomposites with the unique properties of both PDMS elastomer and CNTs and also with high electrical conductivity, piezoresistive properties and temperature dependent resistivity can be used in different sensoring applications.

Details

Sensor Review, vol. 39 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 September 2021

Joseph Raj Xavier

The purpose of this study is to use polybenzoxazine (Pbz) functionalized ZrO2 nanoparticles to synthesize polyurethane (PU)-PbZ/ZrO2 nanocomposite. The results derived from the…

Abstract

Purpose

The purpose of this study is to use polybenzoxazine (Pbz) functionalized ZrO2 nanoparticles to synthesize polyurethane (PU)-PbZ/ZrO2 nanocomposite. The results derived from the electrochemical impedance spectroscopy (EIS) and polarization studies indicated the superior anticorrosive activity of PU-Pbz/ZrO2 nanocomposite coatings compared to those of plain PU coatings. The decreased corrosion current was detected on the scratch of the PU-Pbz/ZrO2 nanocomposite-coated mild steel surface by scanning electrochemical microscopy (SECM) compared to other studied coatings. The superior anticorrosive and mechanical properties of the proposed nanocomposite coatings provide a new horizon in the development of high-performance anticorrosive coatings for various industries.

Design/methodology/approach

The Pbz functionalized ZrO2 nanoparticles were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and thermogravimetric analysis (TGA) in terms of the structural, morphological and thermal properties of these coatings. A different formulation of coatings such as PU, PU-Pbz, PU-ZrO2 and PU-Pbz/ZrO2 were prepared and investigated for their corrosion protection performance on mild steel in natural seawater by electrochemical techniques. The surface morphological studies were done by SEM/EDX and XRD analysis.

Findings

The superior anticorrosive property of the proposed nanocomposite coatings provides a new horizon in the development of high-performance anticorrosive coatings for various industries. Addition of Pbz wrapped ZrO2 nanoparticles into the PU coating resulted in the blockage of charge transfer at the metal/electrolyte interface, which reduced the dissolution of mild steel. It was revealed from the SEM/EDX analysis that the formation of the corrosion products at the metal/electrolyte interface behaved as the passive layer which reduced the dissolution of steel.

Originality/value

The inclusion of polybenzoxazine functionalized ZrO2 nanoparticles to the polyurethane coating reinforces the barrier and mechanical properties of PU-Pbz/ZrO2 nanocomposite, which is due to the synergistic effect of ZrO2 and Pbz.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 1000