Search results

1 – 10 of over 14000
Article
Publication date: 29 June 2018

Desalegn Atalie, Addisu Ferede Tesema and Gideon K. Rotich

Fabrics’ thermal properties greatly influence human comfort during wear. For this reason, fabrics with optimum thermal properties need to be developed. This paper aims to…

Abstract

Purpose

Fabrics’ thermal properties greatly influence human comfort during wear. For this reason, fabrics with optimum thermal properties need to be developed. This paper aims to investigate the effect of weft yarn twist levels on thermal and surface properties of 100 per cent cotton woven fabrics.

Design/methodology/approach

Five types of plain woven cotton fabrics were manufactured using weft yarns with 900, 905, 910, 915 and 920 twists/meter (Tpm). The other parameters of the samples as count, thread density and fabric structures were kept constant. Fabric thermal properties were evaluated by measuring its thermal conductivity, thermal resistance, actual insulation, water permeability, air permeability and wicking ability. The fabric compression and surface properties were also evaluated because they contribute to the overall clothing comfort.

Findings

The results showed that actual insulation and thermal resistance property decreased with an increase in twists/meter of the weft yarn. However, thermal conductivity does not significantly change while fabric compression reduced with an increase in twist as the surface roughness increased.

Originality/value

Comfort is a fundamental requirement in human daily existence, and it is greatly influenced by clothing, which comes in close contact with the human skin. Fabrics’ thermal properties greatly influence human comfort during wear. For this reason, fabrics with optimum thermal properties need to be developed.

Details

Research Journal of Textile and Apparel, vol. 22 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the…

2150

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 November 2009

George K. Stylios

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched…

1010

Abstract

Examines the fifthteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 21 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 November 2008

George K. Stylios

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched…

1180

Abstract

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 11 January 2022

Chitralekha Nahar and Pavan Kumar Gurrala

The thermal behavior at the interfaces (of the deposited strands) during fused filament fabrication (FFF) technique strongly influences bond formation and it is a time…

Abstract

Purpose

The thermal behavior at the interfaces (of the deposited strands) during fused filament fabrication (FFF) technique strongly influences bond formation and it is a time- and temperature-dependent process. The processing parameters affect the thermal behavior at the interfaces and the purpose of the paper is to simulate using temperature-dependent (nonlinear) thermal properties rather than constant properties.

Design/methodology/approach

Nonlinear temperature-dependent thermal properties are used to simulate the FFF process in a simulation software. The finite-element model is first established by comparing the simulation results with that of analytical and experimental results of acrylonitrile butadiene styrene and polylactic acid. Strand temperature and time duration to reach critical sintering temperature for the bond formation are estimated for one of the deposition sequences.

Findings

Temperatures are estimated at an interface and are then compared with the experimental results, which shows a close match. The results of the average time duration (time to reach the critical sintering temperature) of strands with the defined deposition sequences show that the first interface has the highest average time duration. Varying processing parameters show that higher temperatures of the extruder and envelope along with higher extruder diameter and lower convective heat transfer coefficient will have more time available for bonding between the strands.

Originality/value

A novel numerical model is developed using temperature-dependent (nonlinear) thermal properties to simulate FFF processes. The model estimates the temperature evolution at the strand interfaces. It helps to evaluate the time duration to reach critical sintering temperature (temperature above which the bond formation occurs) as it cools from extrusion temperature.

Article
Publication date: 5 June 2017

Malgorzata Matusiak and Lukasz Fracczak

The purpose of this paper is to analyse the seersucker fabrics from the point of view of their ability to ensure the thermo-physiological comfort. It was investigated how…

Abstract

Purpose

The purpose of this paper is to analyse the seersucker fabrics from the point of view of their ability to ensure the thermo-physiological comfort. It was investigated how the kind of the weft yarn and seersucker structure influence the air permeability and thermal insulation properties of the fabrics.

Design/methodology/approach

The paper presents the investigations of the typical seersucker fabrics made of the same set of warps and different weft yarns. Fabrics were manufactured on the same loom with two warp beams. Next they were finished by the same way including washing, drying and stabilisation processes. Fabrics were measured in the range of their air permeability using standard test method. Thermal insulation properties of fabrics were measured in dry and wet state by means of Alambeta. Surface topography of the seersucker fabrics was analysed using 3D laser scanning.

Findings

On the basis of the obtained results it was stated that due to the puckered structure the seersucker fabrics are characterised by high thermal resistance, several times higher than the thermal resistance of typical flat woven fabrics. The seersucker fabrics are characterised by very low value of the thermal absorptivity in wet state at the level appropriate for typical flat fabrics in dry state. It confirmed that the seersucker fabrics ensure the physiological comfort. Application of the elastomeric yarn in weft caused significant tightening the fabric structure. It resulted in low air permeability, fabric stiffness and unpleasant hand.

Research limitations/implications

As a limitation of the investigation of the seersucker fabrics in wet state we can mention the surface topography of the fabrics. It made wetting the fabrics difficult before measuring. It is necessary to elaborate precise procedure of preparation of seersucker fabrics before their testing in the wet state.

Practical implications

Performed investigations showed that the seersucker fabrics have a big potential to be comfortable. By an appropriate designing of their structure it is possible to achieve very good comfort-related properties even without application of innovative comfort-oriented yarns.

Originality/value

The originality of the paper is based on the fact that the measurement was performed for the seersucker fabrics. The fabrics are characterised by the unique structure which influences their appearance and utility properties. It caused that they are willingly applied in different kinds of clothing. Till now any results of comfort-related properties of such kind of the woven fabrics have not been published.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 August 2015

Antonin Havelka, Viera Glombikova, Zdenek Kus and Michal Chotebor

The purpose of this paper is to deal with performance verification of thermal insulation fillings that are used for outer clothes into cold environments. Thermal properties

Abstract

Purpose

The purpose of this paper is to deal with performance verification of thermal insulation fillings that are used for outer clothes into cold environments. Thermal properties of filling materials (down and three sophisticated fillings) were tested under condition approaching real weather conditions in Middle Europe.

Design/methodology/approach

In the paper, modern method of thermal resistance Rct measurement, by Sweating Guarded-Hotplate system, was compared with method of Technical University of Liberec (TUL method). The TUL method shows good results and it is applicable even at ambient temperatures below zero, which fully corresponds to real application of the insulation filling.

Findings

Evaluation of fibre battings were carried out even at temperatures below the freezing point, which is important for simulation of actual application of these filling structures. The highest thermal resistance of goose down confirm that natural materials have their irreplaceable position, especially in application into clothes for extreme conditions.

Research limitations/implications

There does not include effect of the humidity change on thermal insulation properties. It will be subject of further research of authors.

Originality/value

The investigation of thermal insulation properties were carried out under conditions approaching real application of tested materials, namely, at low ambient temperature.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 March 2022

Geetha Margret Soundri, Kavitha S. and Senthil Kumar B.

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn…

Abstract

Purpose

The essential properties of active sports fabrics are moisture management, quick-drying, body heat management and thermal regulations. Fibre type, blending nature, yarn and fabric structure and the finishing treatment are the key parameters that influenced the performance of the clothing meant for sportswear. This study aims to investigate the effect of fibre blending and structural tightness factors on bi-layer sport fabric's dimensional, moisture management and thermal properties.

Design/methodology/approach

In this study, 12 different bi-layer inter-lock fabrics were produced. Polyester filament (120 Denier) yarn was fed to form the backside of the fabric, and the face side was varied with cotton, modal, wool and soya spun yarns of 30sNe. Three different types of structural tightness factors were considered, such as low, medium and high were taken for sample development. The assessment towards dimensional, moisture management and thermal properties was carried out on all the samples.

Findings

The polyester-modal blend with a high tightness factor has shown maximum overall moisture management capability (OMMC) values of 0.73 and air permeability of 205.3 cm3/cm2/s. The same sample has shown comparatively higher thermal conductivity of 61.72 × 10–3 W m-1 °C-1(Under compression state) and 58.45 × 10–3 W m-1 °C-1 (under recovery state). In the case of surface roughness is concerned, polyester-modal blends have shown the lowest surface roughness, surface roughness amplitude and surface friction co-efficient. Among the selected fibre combinations, the overall comfort level of polyester-modal bi-layer knitted structure with a higher tightness factor is appreciable. Polyester-modal is more suitable for active sportswear among the four fiber blend combinations.

Research limitations/implications

The outcome of this study will help to gain a better understanding of fibre blends, structural tightness factor and other process specifications for the development of bi-layer fabric for active sportswear applications. The dynamic functional testing methods (Moisture management and Thermal properties) were carried out to simulate the actual wearing environment of the sports clothing. This study will create a new scope of research opportunities in the field of bi-layer sports textiles.

Originality/value

This study was conducted to explore the influence of fibre blend and structural tightness factor on the comfort level of sportswear and to find the suitable fibre blend for active sportswear clothing.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 26 September 2022

Pelin Altay, Selin Hanife Eryürük, Gülay Özcan, Didem Öztürk, Melda Naz Saral and Çağla Altınordu

Firefighters are exposed to high outdoor temperature and heat stress caused by metabolic activities during firefighting and should wear protective clothing to ensure their…

Abstract

Purpose

Firefighters are exposed to high outdoor temperature and heat stress caused by metabolic activities during firefighting and should wear protective clothing to ensure their safety and health. Traditional firefighter protective suits are bulky and heavy garments with reduced thermal comfort properties since the fabric thickness and moisture barrier layers prevent heat transfer of the garment and cause additional heat stress. The aim of this study is to reduce heat stress by creating a new fabric design with silica aerogel membrane as a moisture barrier for three-layer fabric system.

Design/methodology/approach

Polyacrylonitrile (PAN) nanofibers were produced with three different silica aerogel contents and used for three-layered clothing system as a moisture barrier for giving desired protectiveness and thermal comfort to firefighters. Different fabric combinations were designed using two types of outer shell fabrics, two types of moisture barrier fabrics, two types of thermal barrier fabrics and PAN/silica aerogel membranes.

Findings

The results show that a lighter fabric system with improved wearer’s mobility and thermal comfort properties (thermal resistance and moisture permeability) is achieved with the use of PAN/silica aerogel membrane as an intermediate layer compared to commercial thermal protective fabric systems.

Originality/value

Differently from traditional thermal protective clothing, which may not provide adequate protection in long-term heat conditions or when exposed to flash fire, a new thermal protective clothing has been developed to be used in extremely hot environments, providing desired technical and performance properties, ease to wear comfort.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 11 February 2019

Selin Hanife Eryuruk

The main factors affecting consumers when selecting denim garments are aesthetic, appearance and fashion. Besides these factors, comfort and performance properties of the…

Abstract

Purpose

The main factors affecting consumers when selecting denim garments are aesthetic, appearance and fashion. Besides these factors, comfort and performance properties of the denim garments during usage are very important. The purpose of this paper is to determine the effects of different finishing processes on the performance properties of 100 percent cotton and 98 percent cotton+2 percent elastane denim fabrics.

Design/methodology/approach

The research design for this study consists of experimental study. In order to evaluate the effects of finishing on the performance properties of fabrics, eight types of fabrics were selected for evaluation. Rigid, resin, bleaching and softening type fabrics with and without elastane were analyzed statistically.

Findings

The results obtained in the study clearly showed that the types of finishing and elastane fiber in the fabric structure had a significant influence on mechanical and comfort properties of denim fabrics.

Originality/value

As a result of the literature review, it was seen that there were limited studies concerning mechanical, functional and comfort properties of denim fabrics together. In this study, the effects of finishing processes on the tear strength, stiffness, drape, mechanical and thermal comfort characteristics were deeply evaluated.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 14000