Search results

1 – 10 of over 5000
Article
Publication date: 22 February 2021

Ying Yang, Wei Wu, Xuequn Cheng, Jinbin Zhao, Baijie Zhaoal and Xiaogang Li

This study aims to develops a new-type low-alloy corrosion resistant steel containing Sb and investigate the corrosion mechanism of this new-type low-alloy steel.

Abstract

Purpose

This study aims to develops a new-type low-alloy corrosion resistant steel containing Sb and investigate the corrosion mechanism of this new-type low-alloy steel.

Design/methodology/approach

Energy dispersive spectrometer, X-ray photoelectron spectroscopy, X-Ray diffraction and scanning electron microscopy were used to evaluate the corrosion resistance of the rust layers formed on these samples. Laser confocal microscopy was used to observe the corroded surfaces of the steels.

Findings

Results showed that Sb added can consume H+ in the solution, thereby preventing the oxygen reaction to slow down the corrosion rate. Meanwhile, a stable and insoluble substance (Sb2O3) in the acidic solution would be produced when the reaction of the product of Sb and H+ with the enough dissolved oxygen in the solution. Due to the precipitation of Sb2O3 and iron oxyhydroxides, the rust layer of Sb-containing steel became more uniform and compact, which resulted in better corrosion resistance in acid environment.

Originality/value

In this study, a new-type acid resistant low-alloy steel containing Sb was developed. Compared with the results, the corrosion mechanism of the new-type low-alloy steel in acid environment was discussed.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 July 2021

Xiaoguang Sun, Xuexu Xu, Zihan Wang and Zhiyong Liu

The purpose of this paper is to determine the corrosion fatigue behavior and mechanism of 6005A aluminum alloy and welded joint.

Abstract

Purpose

The purpose of this paper is to determine the corrosion fatigue behavior and mechanism of 6005A aluminum alloy and welded joint.

Design/methodology/approach

Electron back-scattered diffraction (EBSD) were adopted to characterize the microstructure of 6005A aluminum alloy and welded joint. Through potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and corrosion fatigue experiments, the corrosion fatigue behavior and mechanism of 6005A aluminum alloy base metal and welded joint were studied.

Findings

The results show that the corrosion fatigue crack initiation of 6005A aluminum alloy base metal and welded joint is mainly caused by the preferential anodic dissolution and hydrogen concentration in the areas with inclusions and welding defects.

Originality/value

The research is an originality study on the corrosion fatigue behavior and mechanism of 6005A aluminum alloy and welded joint.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 February 1960

NEW SOCIETY FOR CORROSION SCIENCE. News of an important advance in the dissemination of scientific knowledge of current corrosion work comes from a group of eminent…

Abstract

NEW SOCIETY FOR CORROSION SCIENCE. News of an important advance in the dissemination of scientific knowledge of current corrosion work comes from a group of eminent scientists and technologists who propose to found the Corrosion Science Society.

Details

Anti-Corrosion Methods and Materials, vol. 7 no. 2
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 31 January 2020

BaoJun Dong, Wei Liu, Fei Wu, JiaQi Zhu, Banthukul Wongpat, Yonggang Zhao, Yueming Fan and TianYi Zhang

The salinity of the oilfield produced water has a significant effect on steel corrosion. The purpose of this paper is to study the influence of salinity on corrosion

Abstract

Purpose

The salinity of the oilfield produced water has a significant effect on steel corrosion. The purpose of this paper is to study the influence of salinity on corrosion behavior of X60 steel and it also provides basic for material selection of gas wells with high salinity.

Design/methodology/approach

The weight loss experiment was carried out on steel with high temperature and high pressure autoclave. The surface morphology and composition of corrosion scales were studied by means of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry.

Findings

The results show that as salinity increases, the corrosion rate of X60 steel will gradually experience a rapid decline stage and then a slow decline stage. X60 steel is mainly exhibiting uniform corrosion in the first rapid decline stage and pitting corrosion in the second slow decline stage. The increase in salinity reduces gas solubility, which, in turn, changes the morphology and density of the corrosion scales of X60 steel. At low salinity, loose iron oxides generated on the surface of the steel, which poorly protects the substrate. At high salinity, surface of the steel gradually forms protective films. Chloride ions in the saline solution mainly affect the structure of the corrosion scales and initiate pitting corrosion. The increased chloride ions lead to more pitting pits on the surface of steel. The recrystallization of FeCO3 in pitting pits causes the corrosion scales to bulge.

Originality/value

The investigation determined the critical concentration of pitting corrosion and uniform corrosion of X60 steel, and the new corrosion mechanism model was presented.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 February 2020

Cheng Jiang, Ying Yang, Xuequn Cheng, Jinbin Zhao and Xiaogang Li

This study aims to study the effect of Sn on the corrosion behavior of weathering steel (WS) in a simulated tropical marine atmosphere.

Abstract

Purpose

This study aims to study the effect of Sn on the corrosion behavior of weathering steel (WS) in a simulated tropical marine atmosphere.

Design/methodology/approach

Indoor alternate immersion tests, electrochemical measurements and real-time current-monitoring technology based on the galvanic corrosion principle were used and the scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and electron probe microanalyzer were used to analyze the morphology and component of the rust layer.

Findings

The results indicated that Sn has a positive influence on the corrosion process. Sn participated in the composition of the rust layer in the form of SnO2 and is enriched in the inner rust layer. SnO2 participated in the coprecipitation process with iron oxides and oxyhydroxides, which promoted further transformation of γ-FeOOH to α-FeOOH. As a result, the rust layer of Sn-containing steel was continuous, compact and effectively blocked the invasion of aggressive Cl. Therefore, the additive of Sn enhanced the corrosion resistance of WS in a simulated tropical marine atmosphere.

Originality/value

The corrosion behaviors of WS were researched by the real-time current-monitoring technology which was rarely used.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 January 2020

Zhiping Zhu, Chun Shi, Yu Zhang and Zhifeng Liu

The purpose of this paper is to study the effects of Cl and direct stray current on the soil corrosion of three grounding grid materials.

Abstract

Purpose

The purpose of this paper is to study the effects of Cl and direct stray current on the soil corrosion of three grounding grid materials.

Design/methodology/approach

The electrochemical corrosion properties of three grounding grid materials, which include the Q235 steel, Q235 galvanized flat steel and copper, were measured by means of the weak polarization curve method and electrochemical impedance spectroscopy; the corrosion rate of specimens was calculated using the weight loss method; and the specimen surfaces were characterized using the scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction analysis.

Findings

Results showed that both factors, Cl and direct stray current, can accelerate the corrosion rate of grounding grid materials. The magnitude of DC stray current density affected the mass transfer type and response frequency of the anode and cathode reaction of grounding materials, while the Cl contents of the soil only affect the mass transfer rate of the electrode material from the electrochemical impedance spectroscopy diagrams. The electric field generated by the DC stray current caused Cl directed migration. The larger the DC stray current density, the greater the diffusion process and the greater the weight loss rate of the grounding grid materials that would have a logarithmic relationship with the Cl content at the same DC stray current density. The corrosion resistance of the three materials is copper > Q235 galvanized flat steel > Q235 flat steel.

Originality/value

The paper provides information regarding the relationship among Cl, direct stray current and corrosion of three grounding grid materials by means of electrochemical impedance spectroscopy. Meanwhile the weight loss rate is the logarithmic relationship with the Cl content, which is useful for understanding the corrosion mechanism of Q235 steel, Q235 galvanized flat steel and copper under the condition of Cl and direct stray current in soil.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 24 June 2020

Di Xie, Hui Chen, Siyi Yin, Feisen Wang, Jingwen Chen and Sifei Ai

Laser cleaning, as a new type of cleaning technology, has the advantages of environment-friendliness, better selectivity, better controllability and higher efficiency…

Abstract

Purpose

Laser cleaning, as a new type of cleaning technology, has the advantages of environment-friendliness, better selectivity, better controllability and higher efficiency compared to traditional chemical cleaning or grinding. This paper aims to use ultra-fast surface laser cleaning equipment built in laboratory to study the influence of different energy density (7.6, 11.5 and 15.3 J/cm2) on corrosion resistance of the aluminum alloy A7N01P-T4, a high-speed train body material.

Design/methodology/approach

SEM, white light interferometer, EDS and XPS were used to analyze the surface morphology, roughness, element content and oxide layer composition of aluminum alloy before and after cleaning. The corrosion resistance was studied by electrochemical experiments and exfoliation corrosion experiments.

Findings

The results showed that new oxide scale was formed on the surface after laser cleaning. The changes of surface roughness and chemical composition of oxide scale made a significant influence on corrosion behaviors. Better corrosion resistance was obtained with the energy density increased, and at the energy density of 11.5 J/cm2, aluminum alloy exhibited the best corrosion resistance.

Research limitations/implications

The paper only studies specific aluminum alloys and is not universal. Laser cleaning equipment is set up for the laboratory and has not yet been put into industrial production.

Practical implications

This paper indicated that ultra-fast laser processing was a new direction for the development of industrial equipment surface cleaning and carried out ultra-fast laser of aluminum alloy surface cleaning had certain research significance for its corrosion resistance.

Social implications

Compared with the conventional cleaning methods such as air abrasives grinding or chemical cleaning, laser cleaning has advantages of environment-friendliness, better selectivity, better controllability and higher efficiency. Laser cleaning can not only protect the environment, but also improve cleaning efficiency.

Originality/value

Changes in the surface of aluminum alloys after ultra-fast surface laser treatment were found, and the mechanism of changes in aluminum alloy corrosion properties was clarified.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 9 August 2019

Li-Xiang Wang, Da-Hai Xia, Shi-Zhe Song, Yashar Behnamian and Likun Xu

This paper aims to quantify atmospheric corrosion by image analyses. The corrosion extent, form and distribution of corrosion product on Q235B and T91 steels exposed to a…

Abstract

Purpose

This paper aims to quantify atmospheric corrosion by image analyses. The corrosion extent, form and distribution of corrosion product on Q235B and T91 steels exposed to a Zhoushan marine atmosphere over one year are characterized by image analysis.

Design/methodology/approach

Image analysis of corrosion images were achieved using the gray value, wavelet analysis and fuzzy Kolmogorov–Sinai (K–S) entropy.

Findings

As corrosion becomes extensive, the gray value of corrosion images decreases, and the energy value of nine subimages after wavelength decomposition decreases. Fuzzy K–S entropy increases as localized corrosion propagates but decreases as uniform corrosion spreads.

Originality/value

The methods proposed in this work open a new way for fast corrosion evaluation of metallic materials exposed to atmospheric conditions.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 September 1963

Corrosion and Corrosion Control, by Herbert H. Uhlig. The aim of this 370‐page book is well summarised by the sub‐title, i.e. ‘An introduction to corrosion science and…

Abstract

Corrosion and Corrosion Control, by Herbert H. Uhlig. The aim of this 370‐page book is well summarised by the sub‐title, i.e. ‘An introduction to corrosion science and engineering’. The author, a well‐known authority on corrosion subjects, has been in charge of the Corrosion Laboratory, Massachusetts Institute of Technology, since 1946, but his research work in this field began as far back as 1936.

Details

Anti-Corrosion Methods and Materials, vol. 10 no. 9
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 3 January 2017

Ximing Li and Homero Castaneda

The purpose of this paper is to study the damage evolution (DE) of coated API5L-X52 steel pipe with cathodic protection (CP) in nature soil. Also, different coating…

Abstract

Purpose

The purpose of this paper is to study the damage evolution (DE) of coated API5L-X52 steel pipe with cathodic protection (CP) in nature soil. Also, different coating conditions, intact coating and coating with artificial holiday defect are considered to study the electrochemical behavior combined with soil properties and CP potential. An approach of electrochemical impedance spectroscopy (EIS) analysis is also developed.

Design/methodology/approach

This work developed a laboratory experimental set-up of coated pipeline under CP in nature soil. The electrochemical behavior has been investigated using EIS. The CP potential provided by a DC power supplier has been adjusted and recorded to maintain the protective potential of pipe at −850 mV vs Cu/CuSO4.

Findings

Various parameters were derived from the EIS fitting data by equivalent circuit models to illustrate the three DE stages of coated carbon steel in soil. Each stage changes faster for the artificial defect coating system compared to intact coating, especially at the initial water uptake and ion transport stage. The CP potential has been proved to be correlated to the soil properties, coating conditions and DE stages of pipeline samples.

Originality/value

This work is the first one to study DE of coated pipeline system under CP in soil. It introduces an electrochemical method to study coating defects which can promote to design the deterministic model to detect coating defects of buried pipe using AC impedance technique.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 5000