Search results

1 – 10 of 65
Article
Publication date: 3 December 2018

Patcharaporn Chuayplod and Duangdao Aht-Ong

The purpose of this work was to modify the surface of parawood sawdust (Hevea brasiliensis) microcrystalline cellulose (PW-MCC) used as reinforcing agent in polypropylene…

Abstract

Purpose

The purpose of this work was to modify the surface of parawood sawdust (Hevea brasiliensis) microcrystalline cellulose (PW-MCC) used as reinforcing agent in polypropylene composites with benzoyl chloride under a mechanochemistry process.

Design/methodology/approach

The acetylated PW-MCC was produced from heterogeneous condition using planetary ball mill process at a rotation speed of 400 rpm. Before the esterification reaction, PW-MCC was pre-treated with pyridine at 60°C for 1 h in order to penetrate and swell the cellulose structure. The optimum condition of esterified PW-MCC with various molar ratios of benzoyl chloride/anhydroglucose unit (AGU) was studied. The degree of substitution, functional group, thermal stability and morphology of esterified cellulose were characterized by 1H-nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyzer (TGA) and scanning electron microscopy (SEM).

Findings

The functional group from FTIR confirmed that PW-MCC was successfully esterified with benzoyl chloride. The optimum condition which gave the maximum degree of substitution at 3.00 was achieved by using benzoyl chloride/AGU at 5 for 1 h. SEM analysis revealed that the modified PW-MCC surface became rougher than the unmodified PW-MCC surface. The polypropylene composites with 5-30 wt% PW-MCC and esterified PW-MCC were prepared without compatibilizer.

Originality/value

The composites with esterified PW-MCC enhanced water resistance and thermal stability when compared to composites with PW-MCC.

Details

World Journal of Engineering, vol. 15 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 February 2022

Ebtehal Mahmoud Montaser, Nesrin M.N. El Hadidi and Enas Abo Elenen Amin

This paper aims to provide a deeper understanding of using filling materials that are used to fill gaps in wooden objects, and their response to changes in the surrounding…

Abstract

Purpose

This paper aims to provide a deeper understanding of using filling materials that are used to fill gaps in wooden objects, and their response to changes in the surrounding environment to evaluate wood gap fillers and choose the best material. As a wide variety of materials, but most of them were unsuitable for filler mixtures. Specific materials were used, which can adapt to changes in wood size in response to changes in humidity. This research discusses the results of experiments that were conducted to determine how gap fillers composed of glass microballoons, microcrystalline cellulose and paper pulp fills are mixed with Klucel G, Paraloid B-72 and methyl cellulose as binders, and respond in various conditions.

Design/methodology/approach

It requires using several scientific and analytical techniques to provide a deeper understanding of filling materials characterization, dimensional stability, their shrinkage and study mechanical properties.

Findings

The analytical study of filling gaps in wooden objects with different filling materials allowed defining that the main drawbacks of the examined gap fillers were low water resistance, poor dimensional stability upon drying, or exposure to water vapor or liquid water, and fragility. Two types of gap fillers with high mechanical properties and pH values similar to those of wood were found to be appropriate for application on wooden archaeological artifacts.

Originality/value

The importance of the experimental study was to determine suitable filling materials and provide the basic characteristics of filling materials reversibility, workability, dimensional stability, lack of shrinkage, drying, ability to take color and be shaped, stability with aging, compatibility with wood in terms of behavior with changing humidity and non-toxicity. Also, strength properties or their likelihood to deform easily allowing changes in the shape of the wooden object during the movement of wood, either of which may be desirable in specific circumstances.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 June 1988

Christophoros P. Pappas

Differences in the laws and regulations with respect to basic materials, optional ingredients and food additives authorised in ice‐cream manufacture in the EC members states were…

Abstract

Differences in the laws and regulations with respect to basic materials, optional ingredients and food additives authorised in ice‐cream manufacture in the EC members states were studied. No substantial differences exist regarding most of the basic materials. However, there are differences in certain of these materials, e.g. non‐milk fats, skimmed milk powder or sweetners other than sucrose. More differences exist among the optional ingredients and food additives. Most of the food additives authorised by each state ae in the list of additives approved by the EC Council. Compositional requirements for different ice‐cream types were also studied.

Details

British Food Journal, vol. 90 no. 6
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 1 April 1994

H.J. Bixler

Carrageenans are extracted from red algae and, depending on their typesand applications, function as potent thickeners, effective stabilizersand excellent gelling agents. At the…

830

Abstract

Carrageenans are extracted from red algae and, depending on their types and applications, function as potent thickeners, effective stabilizers and excellent gelling agents. At the same time they are convenient and economical to use. Categorizes and specifies them by their chemistry, origin, manufacturing process and by their applications. Suggests and explains common nomenclature, numbering and identification for purposes of regulatory control, food labelling and identification in the marketplace.

Details

British Food Journal, vol. 96 no. 3
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 28 March 2022

Xinyu Chen, Wenjun Wang, Shuaijie Chen and Yubing Dong

This paper aims to study the effect of microcrystalline cellulose (MCC) on the mechanical property and shape memory property of water-borne epoxy (WEP).

Abstract

Purpose

This paper aims to study the effect of microcrystalline cellulose (MCC) on the mechanical property and shape memory property of water-borne epoxy (WEP).

Design/methodology/approach

In the present study, the MCC/WEP composites were successfully prepared by melt-blending, freeze-drying and hot-pressing. The mechanical property tests were performed using a tensile test instrument (Instron Corp, Norwood, Massachusetts, USA). dynamic mechanical analysis Q800 was performed to analyze the sample’s dynamic mechanics. The thermal–mechanical cycle tests performed on a thermal mechanical analysis (TMA) Q400 in dynamic TMA mode enabled to analysis of the shape memory properties of the MCC/WEP composites.

Findings

The results showed that the inclusion of 2 wt.% MCC led to significant improvements in tensile strength and modulus of the composites, with tensile strength increasing by 33.2% and modulus expanding by 65.0%. Although the inclusion of the MCC into WEP enhanced the shape memory property, the MCC/WEP composites still maintained good shape memory fixity and shape memory recovery ratio of more than 95.0%.

Originality/value

This study has a significant reference value for improving the mechanical properties of WEP and other water-borne shape memory polymers.

Details

Pigment & Resin Technology, vol. 51 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 May 2019

Pooria Khalili, Xiao Ling Liu, Kim Yeow Tshai, Ing Kong, Chris Rudd and Xiao Su Yi

The purpose of this paper is to fabricate and characterize the natural fibre (NF) reinforced epoxy composites containing flame retardants (FRs) and microcrystalline cellulose

Abstract

Purpose

The purpose of this paper is to fabricate and characterize the natural fibre (NF) reinforced epoxy composites containing flame retardants (FRs) and microcrystalline cellulose (MCC) in terms of flammability, thermal properties and dynamic mechanical performances.

Design/methodology/approach

The FRs used in this study were ammonium polyphosphate and alumina trihydrate.

Findings

The results demonstrated that the addition of MCC particles into the flame retardant composite (control) further enhanced the self-extinguishing properties of composites, in particular, the burn length. Thermogravimetric analysis showed that the mass residue improved with every addition of MCC particles at 700 °C. For instance, the residual weight enhanced from 28.4 Wt.% to 33 Wt.% for the control and the composite with 7 Wt.% MCCs, respectively. As obtained from the dynamic mechanical analysis, the glass transition temperature of composites increased upon increasing inclusion of MCC particles. For example, this parameter was 77.1 °C and 86.8 °C for the control and composite loaded with 7 Wt.% MCC, respectively.

Originality/value

Thus, the combination of MCC and FR had been proved to be a promising flame retardant system for NF reinforced epoxy.

Details

World Journal of Engineering, vol. 16 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 June 2020

L. Sulaiman, Z.H.Z. Hazrin, N.I.M. Zakir, N.A. Halim, R.A.A. Rusdi, A.S.A. Khair and H.A. Tajuddin

The effect of using microcrystalline cellulose (MCC) as an additive in coating paint films for non-stick coatings was studied in this work. This paper aims to discuss the benefits…

Abstract

Purpose

The effect of using microcrystalline cellulose (MCC) as an additive in coating paint films for non-stick coatings was studied in this work. This paper aims to discuss the benefits of MCC blended in the coating paint film that consists of poly(methyl methacrylate) (PMMA) and dammar.

Design/methodology/approach

PMMA and dammar mixed at a specific Wt.% ratio with xylene as its solvent. Two sets of mixtures were prepared, where one mixture contained MCC and another, without. The mixtures were applied to metal substrates as coating paint films. The performance of the non-stick coating paint film was observed through the adhesive test between adhesion layers on the coating paint film and also through the cross-hatch test for the adhesion of the non-stick coating paint film to the metal substrate. The results correlate with the surface roughness and glossiness tests.

Findings

The results showed that for the coating paint films, Sample B consisted of 80:20 Wt.% ratio of PMMA-dammar with an addition of 5 Wt.% MCC had an excellent performance as non-stick coating paint films. The MCC formed microparticles on the surface of the coating paint film sample and this causes the coating paint film samples with MCC to develop a rougher surface compared to the coating paint film without MCC. Sample B coating paint film had the highest average surface roughness (Ra) of 383 µm. The cross-hatch test showed the coating paint film with the addition of MCC had stronger adhesiveness on the substrate’s surface thus prevents the coating from peeling off from the surface.

Practical implications

The developed coating paint film in this study would be suitable for outdoor applications to prevent illegal advertisements and stickers.

Originality/value

MCC added to the coating paint film improves the surface performance as a non-stick coating.

Details

Pigment & Resin Technology, vol. 49 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 February 2014

M.S. Mohammed, A.E.-S.I. Ahmed and R.M. Osman

A try to find some useful applications for some products prepared from agricultural waste by mixing them with cement to act as reinforcement agents. The paper aims to discuss…

Abstract

Purpose

A try to find some useful applications for some products prepared from agricultural waste by mixing them with cement to act as reinforcement agents. The paper aims to discuss these issues.

Design/methodology/approach

Cement was mixed with microcrystalline cellulosic (MCC) fibres prepared from baggase, soaked in mixing water, followed by cubic pastes formation. The mixing was performed using different ratios of MCC; 0.5, 0.75, 1 and 3 per cent. The cement properties were followed at timed intervals, up to 90 days. The initial and final setting times of the pastes were determined. Bulk density, apparent porosity and compressive strength of the harden cement pastes were also identified. The hydration kinetic was followed by identifying free lime ratio and chemically combined water content. The structure of the hard cement pastes was followed by SEM, FTIR, DSC and XRD.

Findings

It was noticed that the weight of the prepared cement pastes using MCC was reduced, while the compressive strength was increased. In addition, lower ratios of MCC have shown better results at early ages of hydration and reported higher compressive strength than control. No interaction was reported between the fibres and cement constituents based on the performed analysis.

Research limitations/implications

Different types of agricultural wastes can be compared in producing the best type of MCC for the same purpose of this research.

Practical implications

This piece of work has suggested a simple way to convert a product prepared from agricultural wastes in a small uniform size to a reinforcement agent to cement. Consuming this type of waste reduces the risks resulting from its burning at some countries such as Egypt.

Originality/value

MCC fibres have well-known binding properties and used successfully on wide range in medical applications for tablets production with low costs. These fibres have reduced the pastes weight and increased the compressive strength using low ratios of them. Moreover, there is no indication of a reaction between these fibres and cement constituents.

Details

Pigment & Resin Technology, vol. 43 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 6 October 2023

Aishwariya Madhavan, Meher Unnati, K. Rachana, Prateek Jain, K. Bhashasaraswathi and Apurva Kumar Joshi

The purpose of the study was to develop a powder shampoo with antioxidant attributes.

1852

Abstract

Purpose

The purpose of the study was to develop a powder shampoo with antioxidant attributes.

Design/methodology/approach

Dry shampoo compositions were formulated containing alpha olefin sulfonate (AOS), sodium cocoyl isethionate (SCI), microcrystalline cellulose, mannitol, carboxymethyl cellulose, maltodextrin and sodium benzoate with or without extract of Cinnamomum zeylanicum bark. Cinnamon extract was chosen for this study owing to its ubiquitously known antioxidant attributes. The formulations were tested for detergency action and antioxidant potential in vitro.

Findings

Cinnamomum zeylanicum extract exhibited noticeable antioxidant activity in vitro. The authors observed that addition of the bark extract to the shampoo formulation was associated with remarkable increase in total phenolic content, total antioxidant activity and radical scavenging activity without any effect on detergency action.

Research limitations/implications

This preliminary study provides a powder shampoo formulation which exhibits antioxidant attributes as a result of incorporation of cinnamon bark extract. Clinical efficacy of the formulation remains to be tested.

Practical implications

Owing to the powder format of the shampoo, the formulation can be manufactured with ease and economically. Functionalizing the formulation with enhancement of antioxidant activity by incorporation of cinnamon bark extract may be associated with beneficial clinical outcomes, which remains to be tested.

Social implications

The proposed formulation may be stored and sold in eco-friendly packing material, thus could pave the way for reducing the burden of plastic consumption by the shampoo industry.

Originality/value

The present work demonstrates that incorporation of cinnamon bark extract to a powder shampoo formulation, containing AOS and SCI as principle surfactants, significantly enhances its antioxidant attributes.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 25 May 2010

M. Abdel Rehim, H.M. Fahmy, Z.E. Mohamed, M.H. Abo‐Shosha and N.A. Ibrahim

The purpose of this paper is to show how to remove some dyestuffs, as pollutants, from their aqueous solutions.

Abstract

Purpose

The purpose of this paper is to show how to remove some dyestuffs, as pollutants, from their aqueous solutions.

Design/methodology/approach

To achieve the goal, a water soluble hyperbranched poly (ester‐amide) (HBP) was synthesised using the melt polycondensation method by the reaction of maleic anhydride (MA) and diisopropanol amine (DIPA) at 140°C at a molar ratio of 1:1.3 MA: DIPA, respectively. This HBP was incorporated in the preparation of an effective microcrystalline cellulose (MCC)/dimethyloldihydroxyethylene urea (DMDHEU)/HBP adduct by crosslinking HBP with DMDHEU in presence of MCC. Furthermore, the prepared adduct was characterised by investigation its infra red and then utilised in the removal of three anionic dyestuffs from aqueous solutions, namely Irgalan Blau 3GL (an acid dye), SIRIUS Blau S‐BRR (a direct dye) and Levafix Brill Orange P‐GR (a hydrolysed reactive dye).

Findings

The results obtained revealed that the optimum conditions for preparing MCC/DMDHEU/HBP adduct are [HBP], 90 g/l; [DMDHEU], 200 g/l; LR, 1/3.3; [NC4LH], 20 g/l; a time of 30 min and a temperature of 160°C. Moreover, the results also showed that the extent of removal of such dyestuffs from their aqueous solutions by the prepared adduct follows the order: reactive dye>acid dye>direct dye, it is more pronounced at lower than at higher pH values and the removal of each dye by that adduct follows a first‐order reaction.

Research limitations/implications

Other substrates such as chitosan can be used to prepare more effective adducts.

Practical implications

Hyperbranched polymers can be used effectively to prepare ion exchangers capable of removing the pollutants of dyestuffs from their aqueous solutions.

Originality/value

The aforementioned prepared HBP is a novel hyperbranched polymer and could be applied in the removal of many other pollutants.

Details

Pigment & Resin Technology, vol. 39 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 65