Search results

1 – 10 of over 6000
Article
Publication date: 6 November 2009

Bidhan Samanta and Tithi Maity

The purpose of this paper is to evaluate the concentration effect of liquid amine terminated poly (ethylene glycol) benzoate (ATPEGB) modifiers and red mud waste filler on…

Abstract

Purpose

The purpose of this paper is to evaluate the concentration effect of liquid amine terminated poly (ethylene glycol) benzoate (ATPEGB) modifiers and red mud waste filler on mechanical and thermal properties of cured epoxy along with the optimum result of modified epoxy.

Design/methodology/approach

For effective toughening, different compositions are made by adding various concentration of ATPEGB to epoxy. The concentration of 2, 5 and 10 parts per 100 parts of epoxy resin of aluminium silicate‐based pristine red mud waste is incorporated into each modified epoxy matrix. These filled modified matrixes are cured with ambient temperature curing agent triethylene tetramine and are evaluated with respect to their impact, tensile and flexural strengths. The morphology is analysed by scanning electron microscopy and dynamic mechanical analysis. The thermal stability by thermogravimetric analysis is also reported.

Findings

The modification of epoxy resin using ATPEGB and filler shows significant enhancement of mechanical strength over unmodified epoxy. The increase depends on concentration of the modifier and filler. The reason behind this is that in the initial stage of curing the ATPEGB are miscible with the epoxy and form a homogeneous solution. This good mixing promotes the chemical reaction and network formation. During the curing process, as the molecular weight increases, the component separates within the reaction medium to form a second dispersed phase.

Research limitations/implications

This paper discusses only ATPEGB synthesised by using poly (ethylene glycol) (PEG) of 200, 400 and 600 and only one filler red mud waste. Besides these, by changing the molecular weight of PEG, other ATPEGB could be synthesised and the efficiency of modification of epoxy resin using these modifiers and other filler besides red mud waste could also be studied.

Originality/value

This paper regarding concentration effect of modifier and filler is novel and ATPEGB modified filled epoxy could be used in the fields of coating, casting, adhesives, potting and encapsulation of semiconductor devices.

Details

Pigment & Resin Technology, vol. 38 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 November 2008

W.B. Liu, J. Wang, Q.H. Qiu and M.L. Zhang

The paper's purpose is to optimise lab‐size synthesis process of a fluorene‐containing epoxy resin, characterise structure of the resulting epoxy resin and evaluate mechanical…

1578

Abstract

Purpose

The paper's purpose is to optimise lab‐size synthesis process of a fluorene‐containing epoxy resin, characterise structure of the resulting epoxy resin and evaluate mechanical properties of the cured fluorene‐containing polymers.

Design/methodology/approach

The synthesis of the fluorene‐containing epoxy resin was accomplished by the polycondensation of 9,9‐bis(4‐hydroxyphenyl)‐fluorene and epichlorohydrin in the presence of quaternary ammonium salt and composite solvent under vacuum. The chemical structure of epoxy resin thus obtained was characterised with FTIR, NMR and MS. The shear strengthes of cured fluorene‐containing epoxy resin were determined and compared with that of cured E‐44 bisphenol A epoxy resin and F‐44 novolac epoxy.

Findings

The epoxide equivalent weight (EEW) of the fluorene‐containing epoxy resin reached 240‐246 g/mol under optimal epoxidising condition. The resulting epoxy resin exhibited approximate high temperature performance relative to F‐44 novolac epoxy, much better heat resistance than that of E‐44 epoxy resin and lower moisture uptake than that of the two above‐described resins.

Research limitations/implications

The shear strength of cured fluorene‐containing epoxy resin was relatively low at ambient temperature, whereas was much higher than that of bisphenol A epoxy resin at higher temperature, making it a potential candidate for many applications such as high temperature adhesives, coatings and matrix resins for advanced composite.

Originality/value

The method for preparation was modified and improved, structure characterisation was comprehensive. The material prepared could find numerous applications as heat‐resistant adhesives and matrix resins.

Details

Pigment & Resin Technology, vol. 37 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 April 2014

Seok-Hwan Huh, Kang-Dong Kim and Keun-Soo Kim

The purpose of this paper is to evaluate the relationship between the Cu trace and epoxy resin and to check the validity of surface and interfacial cutting analysis system…

Abstract

Purpose

The purpose of this paper is to evaluate the relationship between the Cu trace and epoxy resin and to check the validity of surface and interfacial cutting analysis system (SAICAS) by comparing its results to those of the 90° peel test.

Design/methodology/approach

In this study, the effects of surface morphology on the adhesion strength were studied for a Cu/epoxy resin system using a SAICAS. In order to evaluate the peel strength of the sample, the curing degree and surface morphology of the epoxy resin were varied in the Cu/epoxy resin system.

Findings

The results indicated that the peel strength is strongly affected by the curing degree and the surface morphology of the epoxy layer. As the pre-cure time increased, the interactions between the epoxy resin and permanganate during the adhesion promotion process decreased, which decreased the surface roughness (Ra) of the resin. Therefore, the surface roughness of the epoxy resin decreased with increasing pre-cure time. The curing degree was calculated with the FTIR absorption peak (910 cm−1) of the epoxy groups. The high curing degree for the epoxy resin results in a coral-like morphology that provides a better anchoring effect for the Cu trace and a higher interfacial strength.

Research limitations/implications

It is necessary to study the further adhesion strength, i.e. the friction energy, the plastic deformation energy, and the interfacial fracture energy, in micro- and nanoscale areas using SAICAS owing to insufficient data regarding the effects of size and electroplating materials.

Originality/value

From findings, it is found that measuring the peel strength using SAICAS is particularly useful because it makes the assessment of the peel strength in the Cu/epoxy resin system of electronic packages possible.

Details

Circuit World, vol. 40 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 May 1990

S. Swamp

The X‐ray diffraction patterns of epoxy resins: four samples with different epoxide equivalents and coal‐tar blended epoxy resins: three samples with different epoxide equivalents…

Abstract

The X‐ray diffraction patterns of epoxy resins: four samples with different epoxide equivalents and coal‐tar blended epoxy resins: three samples with different epoxide equivalents were recorded using CuKa X‐ray radiation. These X‐ray diffraction patterns were indicating the amorphous nature of the resins. Their intensity curves were subjected to Fourier Analysis for the first time in order to get more information about the difference between epoxy and coal‐tar blended epoxy resins in terms of their internal structure such as particle size, percentage crystallanity and electron density fluctuations. Also, the effect of different epoxide equivalent on these physical parameters was interpreted successfully in epoxy as well as coal‐tar blended epoxy resins.

Details

Pigment & Resin Technology, vol. 19 no. 5
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 1 February 1995

Sumeet Trehan and M.C. Shukla

The acute shortage coupled with tremendous increase in cost of various solvents used by paint industry and pollution becoming a serious concern has resulted in intensive study of…

Abstract

The acute shortage coupled with tremendous increase in cost of various solvents used by paint industry and pollution becoming a serious concern has resulted in intensive study of water‐borne coatings. Water‐borne coatings ideally meet the needs for coating systems which do not cause atmospheric pollutions and at the same time help in conservation of precious and renewable petroleum resources. Many research workers have developed water‐soluble epoxies, alkyds and acrylics to make water‐based surface coatings.

Details

Pigment & Resin Technology, vol. 24 no. 2
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 1 November 2006

V. Shukla

To reduce the cost of epoxy adhesive without affecting the properties of epoxy adhesive in two pack system.

Abstract

Purpose

To reduce the cost of epoxy adhesive without affecting the properties of epoxy adhesive in two pack system.

Design/methodology/approach

For effective toughening, adhesion, chemical resistance, etc. various compositions were made by incorporating flow modified solid epoxy resin. The impact, adhesive strengths and some other properties of the unmodified and modified epoxy networks were characterised.

Findings

The modification of epoxy resin using flow modified solid epoxy resin showed significant enhancement of impact and adhesive strengths and chemical resistance over the unmodified one. The optimum results were obtained at 13.66 parts per hundred parts of epoxy resin (phr) of modifier by replacing 4.33 phr of aerosil.

Research limitations/implications

The modifier, 7004 FM, used in the present context was high molecular weight flow modified epoxy resin. Besides, these results could be obtained from other grades of flow modified high molecular weight epoxy resin. In addition, the efficiency of modification of epoxy resin using this could also be studied.

Practical implications

The method developed provided a simple and practical solution to removing the costly aerosil without affecting properties such as toughness, adhesive strength and chemical resistance of the cured epoxy.

Originality/value

The method for enhancing toughness, adhesive strength and chemical resistance of cured epoxy was novel and could find numerous applications in surface coating and adhesive.

Details

Pigment & Resin Technology, vol. 35 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 February 1992

S.C. Gupta and M.C. Shukla

Water soluble epoxy‐amine adducts were prepared by reacting epoxy resin with diethanolamine in different molar ratios. These adducts were further partially esterified with linseed…

Abstract

Water soluble epoxy‐amine adducts were prepared by reacting epoxy resin with diethanolamine in different molar ratios. These adducts were further partially esterified with linseed oil fatty acids. Aqueous coating compositions for cathodic electrodeposition were prepared from epoxy‐amine adducts and esterified epoxy‐amine adducts separately. Film properties of cathodically electrodeposited coatings were evaluated and studied. It was observed that coatings based on 20% and 30% esterified epoxy‐amine adducts had good overall film properties.

Details

Pigment & Resin Technology, vol. 21 no. 2
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 2 January 2018

Joseph Raj Xavier

This paper aims to investigate the effect of introducing nano-ceria (CeO2) particles to the epoxy coatings on mild steel in natural seawater.

343

Abstract

Purpose

This paper aims to investigate the effect of introducing nano-ceria (CeO2) particles to the epoxy coatings on mild steel in natural seawater.

Design/methodology/approach

The epoxy–ceria nanoparticles were coated with mild steel using a wire-wound draw-down bar method. The effects of ceria nanoparticles on the corrosion resistance of epoxy-coated samples were analyzed using scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS).

Findings

Localized measurements such as oxygen consumption and iron dissolution were observed using SECM in natural seawater in the epoxy-coated sample. The increase in film resistance (Rf) and charge transfer resistance (Rct) values by the addition of nano-ceria particles in the epoxy coating was measured from EIS measurements after wet and dry cyclic corrosion test. Scanning electron microscope (SEM)/energy dispersive X-ray spectroscope (EDX) analysis showed that complex oxides of nano-ceria were enriched in corrosion products at a scratched area of the coated mild steel after corrosion testing. Focused ion beam-transmission electron microscope (FIB-TEM) analysis confirmed the presence of the nanoscale oxide layers of ceria in the rust of the steel.

Research limitations/implications

The tip current at −0.70 V for the epoxy–CeO2-coated sample decreased rapidly because of cathodic reduction of the dissolved oxygen. The increase in film resistance (Rf) and charge transfer resistance (Rct) values by the addition of nano-ceria particles in the epoxy coating were measured from EIS measurements after wet and dry cyclic corrosion test.

Practical implications

The presence of complex oxide layers of nano-ceria layers protects the coated steel from rusting.

Social implications

The use of this nano-ceria for corrosion protection is environment-friendly.

Originality/value

The results of this study indicated the significant effect of nano-ceria particles on the protective performance and corrosion resistance of the epoxy coating on mild steel. The dissolution of Fe2+ was lower in the epoxy–ceria nanoparticle-coated mild steel than that of the epoxy-coated mild steel resulting in a lower anodic current of steel. The increase in film resistance and the charge transfer resistance showed that the nano-ceria particles and the formation of complex oxides provide better barrier protection to the coating metal surfaces.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 January 2014

Xugang Zhang, Bin Zhang, Mingming Sun, Jianhui Li, Lei Wang and Chuanli Qin

– In order to obtain functionalized core-shell nanoparticles (CSNPs) as excellent toughening agents for epoxy resins. The paper aims to discuss these issues.

Abstract

Purpose

In order to obtain functionalized core-shell nanoparticles (CSNPs) as excellent toughening agents for epoxy resins. The paper aims to discuss these issues.

Design/methodology/approach

Functionalized CSNPs containing epoxy groups on the surface were synthesized by emulsion polymerization with butyl acrylate as the core and methyl methacrylate copolymerizing with glycidyl methacrylate (GMA) as the shell. CSNPs were used as toughening agents for epoxy resins and their chemical structure was characterized by FT-IR. The morphology of modified epoxy networks (MEPN) was analyzed by SEM and TEM. Both the mechanical properties and thermodynamic properties were studied.

Findings

The results show that nearly spherical CSNPs with the particle size of 50-100 nm are obtained. A certain amount of CSNPs are uniformly dispersed in epoxy resins by the grinding method and the MEPN shows the ductile fracture feature. The miscibility between CSNPs and epoxy matrix increases with the increase of GMA concentration which makes more bonds form between them. Epoxy resins toughened with 10 wt% CSNPs containing 10 wt% GMA show the best mechanical properties and the increase in tensile strength and impact strength of the MEPN is 13.5 and 59.7 percent, respectively, over the unmodified epoxy networks. And the improvement in impact strength is not accompanied with loss of thermal resistance.

Practical implications

The MEPN can be used as high-performance materials such as adhesives, sealants and matrixes of composites.

Originality/value

The functionalized CSNPs are novel and it can greatly increase the toughness of epoxy resins without loss of thermal resistance.

Details

Pigment & Resin Technology, vol. 43 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 August 1964

Dr.S. Kut

IN many of the industrial and other aggressive environmental conditions encountered today a synthetic, plastics‐type of paint system must be used, since traditional paints give…

Abstract

IN many of the industrial and other aggressive environmental conditions encountered today a synthetic, plastics‐type of paint system must be used, since traditional paints give poor and limited service. However, for these synthetic paints to be fully effective, they must be applied to more scrupulously prepared surfaces. The finer tolerances and more exacting application requirements of synthetic plastics‐type coatings, such as the epoxies, must be appreciated. Once these are understood it is not difficult to put the materials into use, where they give outstanding long‐term protection. Some of the physical, chemical and solvent‐resistance characteristics of the epoxy resin coatings can, of course, be attained with other synthetic paints, and all these materials have their place in the paint manufacturer's armoury. There are resins showing better flexibility and chemical or heat resistance than the epoxies, but the latter are outstanding in combining these and other characteristics to a marked degree—hence their fairly rapid user acceptance. There is inevitably over‐lapping in characteristics with other coatings, particularly the polyurethanes, and it is not claimed here that epoxy coatings can confer protection against all corrosive environments.

Details

Anti-Corrosion Methods and Materials, vol. 11 no. 8
Type: Research Article
ISSN: 0003-5599

1 – 10 of over 6000