Search results

1 – 3 of 3
Open Access
Article
Publication date: 6 October 2023

Aishwariya Madhavan, Meher Unnati, K. Rachana, Prateek Jain, K. Bhashasaraswathi and Apurva Kumar Joshi

The purpose of the study was to develop a powder shampoo with antioxidant attributes.

1234

Abstract

Purpose

The purpose of the study was to develop a powder shampoo with antioxidant attributes.

Design/methodology/approach

Dry shampoo compositions were formulated containing alpha olefin sulfonate (AOS), sodium cocoyl isethionate (SCI), microcrystalline cellulose, mannitol, carboxymethyl cellulose, maltodextrin and sodium benzoate with or without extract of Cinnamomum zeylanicum bark. Cinnamon extract was chosen for this study owing to its ubiquitously known antioxidant attributes. The formulations were tested for detergency action and antioxidant potential in vitro.

Findings

Cinnamomum zeylanicum extract exhibited noticeable antioxidant activity in vitro. The authors observed that addition of the bark extract to the shampoo formulation was associated with remarkable increase in total phenolic content, total antioxidant activity and radical scavenging activity without any effect on detergency action.

Research limitations/implications

This preliminary study provides a powder shampoo formulation which exhibits antioxidant attributes as a result of incorporation of cinnamon bark extract. Clinical efficacy of the formulation remains to be tested.

Practical implications

Owing to the powder format of the shampoo, the formulation can be manufactured with ease and economically. Functionalizing the formulation with enhancement of antioxidant activity by incorporation of cinnamon bark extract may be associated with beneficial clinical outcomes, which remains to be tested.

Social implications

The proposed formulation may be stored and sold in eco-friendly packing material, thus could pave the way for reducing the burden of plastic consumption by the shampoo industry.

Originality/value

The present work demonstrates that incorporation of cinnamon bark extract to a powder shampoo formulation, containing AOS and SCI as principle surfactants, significantly enhances its antioxidant attributes.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 20 April 2022

Qunfeng Zeng, Hao Jiang, Qi Liu, Gaokai Li and Zekun Ning

This paper aims to introduce a high-temperature grease design method assisted by back propagation neural network (BPNN) and verify its application value.

Abstract

Purpose

This paper aims to introduce a high-temperature grease design method assisted by back propagation neural network (BPNN) and verify its application value.

Design/methodology/approach

First, the grease data sets were built by sorting out the base data of greases in a large number of literatures and textbooks. Second, the BPNN model was built, trained and tested. Then, the optimized BPNN model was used to search the unknown data space and find the composition of greases with excellent high-temperature performance. Finally, a grease was prepared according to the selected composition predicted by the model and the high-temperature physicochemical performance, high-temperature stability and tribological properties under different friction conditions were investigated.

Findings

Through high temperature tribology experiments, thermal gravimetric analysis and differential scanning calorimetry experiments, it is proved that the high temperature grease prepared based on BPNN has good high-temperature performance.

Originality/value

To the best of the authors’ knowledge, a new method of designing and exploring high-temperature greases is successfully proposed, which is useful and important for the industrial applications.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2024

Zhicai Du, Qiang He, Hengcheng Wan, Lei Zhang, Zehua Xu, Yuan Xu and Guotao Li

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or…

Abstract

Purpose

This paper aims to improve the tribological properties of lithium complex greases using nanoparticles to investigate the tribological behavior of single additives (nano-TiO2 or nano-CeO2) and composite additives (nano-TiO2–CeO2) in lithium complex greases and to analyze the mechanism of their influence using a variety of characterization tools.

Design/methodology/approach

The morphology and microstructure of the nanoparticles were characterized by scanning electron microscopy and an X-ray diffractometer. The tribological properties of different nanoparticles, as well as compounded nanoparticles as greases, were evaluated. Average friction coefficients and wear diameters were analyzed. Scanning electron microscopy and three-dimensional topography were used to analyze the surface topography of worn steel balls. The elements present on the worn steel balls’ surface were analyzed using energy-dispersive spectroscopy and X-ray photoelectron spectroscopy.

Findings

The results showed that the coefficient of friction (COF) of grease with all three nanoparticles added was low. The grease-containing composite nanoparticles exhibited a lower COF and superior anti-wear properties. The sample displayed its optimal tribological performance when the ratio of TiO2 to CeO2 was 6:4, resulting in a 30.5% reduction in the COF and a 29.2% decrease in wear spot diameter compared to the original grease. Additionally, the roughness of the worn spot surface and the maximum depth of the wear mark were significantly reduced.

Originality/value

The main innovation of this study is the first mixing of nano-TiO2 and nano-CeO2 with different sizes and properties as compound lithium grease additives to significantly enhance the anti-wear and friction reduction properties of this grease. The results of friction experiments with a single additive are used as a basis to explore the synergistic lubrication mechanism of the compounded nanoparticles. This innovative approach provides a new reference and direction for future research and development of grease additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0291/

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 3 of 3