Search results

1 – 10 of 130
Article
Publication date: 1 August 2009

Ali A. Hebeish, Essam S. Abdel-Halim, Ibrahim A. Hamdy, Sanaa M. El-Sawy, Mervat S. Ibrahim and Fikry A. Abdel-Mohdy

Linear electron beam radiation has been used to induce irradiation grafting of glycidyl methacrylate (GMA), glycidyl methacrylate/β-cyclodextrin (GMA/β-CD), and glycidyl…

Abstract

Linear electron beam radiation has been used to induce irradiation grafting of glycidyl methacrylate (GMA), glycidyl methacrylate/β-cyclodextrin (GMA/β-CD), and glycidyl methacrylate/monochlorotriazinyl-β-cyclodextrin (GMA/MCT-β-CD) onto cotton fabrics. The effect of radiation dose, GMA concentration and CDs concentration on graft yield, epoxide content and the bonded amount of CDs was investigated. Results obtained reveal that the amount of CDs bonded within the fabric; the add-on and the epoxide content are directly related to the CDs concentration, GMA concentration and the irradiation dose. Graft yield and epoxide content increase with the increase of radiation dose to a certain extent, and they decrease due to degradation of GMA at higher irradiation doses. Results also reveal that although the bonded amount of CDs is nearly proportional to the concentration of CDs in the treatment solution, the accessibility ratio of CDs decreases with increasing CDs concentration. Treatment of fabrics grafted with GMA (Cell-g-GMA) and GMA/CDs mixtures (Cell-g-GMA/CDs) in a sequel step with the corresponding CDs increases the amounts of CDs fixed onto the fabrics, while epoxide content decreases. The treatment of the cotton fabrics with GMA and CDs was established on the basis of spectral data studies.

Details

Research Journal of Textile and Apparel, vol. 13 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 23 February 2022

Khaled Mostafa

This paper aims to study previously prepared and fully characterized chitosan nanoparticles (CNPs) as a starting substrate and microwave initiation technique for grafting acrylic…

Abstract

Purpose

This paper aims to study previously prepared and fully characterized chitosan nanoparticles (CNPs) as a starting substrate and microwave initiation technique for grafting acrylic acid (AA). This was done to see the influence of both CNPs with respect to well-dispersed nanosized particles, large surface areas, biodegradability, biocompatibility and reactivity and microwave initiation technique with respect to reduction in organic solvents, toxic chemical initiator and exposer time on exploiting the graft yield % and enhancing water solubility and antibacterial properties.

Design/methodology/approach

For evaluating the best accurate standard metrological method for calculating the graft yield %, the grafting parameters were stated in terms of graft yield percent and measured gravimetrically (based on dry weight method) and titrimetrically (based on carboxyl content). Microwave power, AA and CNPs concentrations and reaction duration were shown to be the most important parameters influencing the grafting process.

Findings

The optimum reaction conditions were obtained when CNPs 1.5 g, AA 150 bows, microwave irradiation power 500 W and reaction duration 120 s were used. Various analytical methods were used to characterize CNPs and poly(AA)–CNPs graft copolymers. According to the findings, Fourier transform infrared spectroscopy examination determines the attachment of carboxyl groups to CNPs chains. The thermogravimetric analysis revealed that the copolymers were more thermally stable than CNPs counterparts. Furthermore, the resulting copolymers were shown to have greater water solubility biodegradability resistance and antibacterial properties than CNPs counterpart. Finally, a preliminary mechanism demonstrating all occasions that occur during the polymerization reaction has been proposed.

Originality/value

The advancement addressed here is undertaken using previously prepared and fully characterized CNPs as a green bio-nanocompatible polymer and microwave initiation technique as green and efficient tool with respect to reduction in organic solvents toxic chemical initiator and exposer time for grafting AA.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 November 2011

Essam S. Abdel-Halim, Moustafa M.G. Fouda, Sanaa M. El-Sawy, Ibrahim A. Hamdy and Fikry A. Abdel-Mohdy

Glycidyl methacrylate/monochlorotriazinyl-β-cyclodextrin mixture (GMA/MCT-β-CD) is grafted onto cotton fabric by an irradiation technique that uses linear electron beam radiation…

Abstract

Glycidyl methacrylate/monochlorotriazinyl-β-cyclodextrin mixture (GMA/MCT-β-CD) is grafted onto cotton fabric by an irradiation technique that uses linear electron beam radiation for initiating the grafting reaction. The obtained grafted fabric (cell-g-GMA/MCT-β-CD) is loaded with chlorohexidin diacetate (an antimicrobial agent) and subjected to several washing cycles. Grafted cotton fabrics (before and after loading with the antimicrobial agent) and control cotton fabrics are characterized for antimicrobial activity against different kinds of bacteria and fungi by using the diffusion disk method.

Grafted fabrics that are loaded with an antimicrobial agent show very good antimicrobial activity in comparison with control and grafted fabrics which are not loaded with an antimicrobial agent. The results in this study also demonstrate that GMA/MCT-β-CD grafted fabrics that are loaded with an antimicrobial agent retain a good deal of their antimicrobial activity after five washings. Good retention of antimicrobial activity is due to the cavities that are present in the cyclodextrin moieties which are used to host and keep the antimicrobial agent.

Details

Research Journal of Textile and Apparel, vol. 15 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 27 July 2012

J. Gisbert, M. Bonet, P. Díaz, I. Montava and P. Monllor

Electron beam is a way of radiation that can induce different reactions on polymers. The purpose of this work is to analyze the effect that the electron beam can produce on…

Abstract

Purpose

Electron beam is a way of radiation that can induce different reactions on polymers. The purpose of this work is to analyze the effect that the electron beam can produce on polyester fabrics.

Design/methodology/approach

Poly(ethylene terephthalate) (PET) fibres were treated at 0, 50, 100, 150, and 200 KGy. Later on surface modification was analyzed by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Colorimetric and thermal measurements were studied too, as well as traction resistance.

Findings

Traction resistance showed no significant variations. As a result the authors could observe some changes in fabric witnesses and cristallinity increase, but no changes in traction resistance were observed. Moreover, when surface was studied, roughness was increased as oligomers moved towards fibre surface because of radiation dose.

Originality/value

The authors could appreciate roughness increased with radiation dose as well as yellowness and crystallinity.

Details

International Journal of Clothing Science and Technology, vol. 24 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 November 2014

F. Bezgin and K. Demirelli

This paper aims to a newly designed photoresponsive four-armed graft copolymer was synthesised and characterised. The synthesised polymer contains photochemical group and a…

Abstract

Purpose

This paper aims to a newly designed photoresponsive four-armed graft copolymer was synthesised and characterised. The synthesised polymer contains photochemical group and a greater part of the cross-linkable functional group which is not affected by short wavelength when subject to under ultraviolet (UV) irradiation in film status.

Design/methodology/approach

The four-armed macroinitiator was prepared by reacting diethanol amine with poly [methyl-2-chloro-4-{7-(chloroacetyl) oxy]-2-oxo-2H-chromen-4-yl}-2-methylbutanoate] and acylating the product with chloroacetyl chloride. A grafting reaction with n-butyl methacrylate was carried out in the presence of the four-armed macroinitiator and the catalyst CuBr/2, 2′-bipyridyne at 90°C. All of the synthesised polymers were structurally characterised by Fourier transform infrared spectroscopy (FT-IR) and Hydrogen-1 Nuclear Magnetic Resonance (1H-NMR) spectra. Gel permeation chromatography was used to obtain the molecular weights of polymer.

Findings

1H-NMR, FT-IR and ultraviolet-visible (UV-Vis) spectroscopy demonstrated that the four-armed macroinitiator and the graft copolymer was successfully synthesised. The end-functionalised poly(methyl methacrylate) with 7-hydroxyl-4-chloromethyl coumarin was irradiated at the wavelength larger than 300 nm to create the cyclobutane ring in between the 7-hydroxyl-4-chloro methyl coumarin unities. To characterise the polymer and show the transformation of coumarin unities into photodimers, 1H-NMR, FT-IR and UV-Vis spectroscopy were used.

Research limitations/implications

Graft copolymer containing coumarin has involves photocrosslinkable functional group, in which reactive functional group has attracted great interest from both industrial and academic fields. Their synthesis provides the opportunity for a compatible modification of the graft copolymer structure to develop adapted macromolecules for a range of end practices.

Practical implications

A photoresponsive graft copolymer can have a role in an active area of polymer chemistry research due to its uses in the areas of photolithography, liquid crystal, non-linear optical materials, laser dyes, fluorescence materials and future microelectronics.

Originality/value

Graft copolymers containing a photocrosslinkable functional group, and a star polymer may be prepared using the method described in this paper and then used in technological applications. The method discussed here also allows photoinduced reversible self-healing in solid polymers.

Details

Pigment & Resin Technology, vol. 43 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 July 2021

Abolfazl Zare

The purpose of this paper is to assess the possibility of cross-linking silk fabric using citric acid (CA) as the cross-linking agent and nano-TiO2 (NTO) particles as a catalyst…

Abstract

Purpose

The purpose of this paper is to assess the possibility of cross-linking silk fabric using citric acid (CA) as the cross-linking agent and nano-TiO2 (NTO) particles as a catalyst at low temperature and under UV irradiation. This paper also assesses the possibility of treated samples with suitable combinations of CA and NTO to impart multiple functional properties such as self-cleaning and antimicrobial properties.

Design/methodology/approach

In this research, ß-cyclodextrin (ß-CD) grafted onto silk fabric using CA as a crosslinking agent and NTO particles as a catalyst through a pad-dry-cure technique and with UVA irradiation. The effects of different concentrations of CA, ß-CD and NTO particles on some properties of the treated samples are evaluated, and the optimum finishing conditions are obtained. The author also investigated the washing durability of the modified product after ten times of washing.

Findings

The results showed that CA plays the role of a linking agent through an esterification reaction with the hydroxyl groups of both ß-CD and silk fabrics and improves the durability of materials on the textile surface. Also, the silk fabrics treated with CA only were found to have excellent photocatalytic properties and better antibacterial activity than the control sample and the fabrics treated with a mixture of ß-CD/CA.

Originality/value

This study was conducted to achieve multiple functions such as antibacterial and photocatalytic activities, good dry crease recovery angle and wet crease recovery angle behavior without a significant adverse effect on the Yellowness index and tensile properties for treated silk fabrics.

Details

Research Journal of Textile and Apparel, vol. 26 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 9 December 2021

Abolfazl Zare and Pedram Payvandy

The purpose of this study is the chemical grafting of β-Cyclodextrin (β-CD) onto silk fabrics by the use of butane tetracarboxylic acid (BTCA) as a crosslinking agent and nano-TiO2

Abstract

Purpose

The purpose of this study is the chemical grafting of β-Cyclodextrin (β-CD) onto silk fabrics by the use of butane tetracarboxylic acid (BTCA) as a crosslinking agent and nano-TiO2 (NTO) as a catalyst. The effects of different parameters involved in this particular process, e.g. β-CD, BTCA and NTO concentrations, are examined using the artificial neural network (ANN). The method is evaluated for its ability to predict certain properties of treated fabrics, including grafting yield, dry crease recovery angle (DCRA) and wet crease recovery angle (WCRA), tensile strength, elongation at break and methylene blue dye absorption.

Design/methodology/approach

This study was conducted to describe the cross-linking of silk with 1,2,3,4-BTCA as a crosslinking agent in a wet state at low temperatures using NTO catalyst to improve the dry and wet wrinkle recovery (DCRA and WCRA) of silk fabrics. An ANN was also used to model and analyze the effects of BTCA, β-CD and NTO concentrations on the grafting percentage and some properties of the treated samples.

Findings

According to the results, the wet and dry wrinkle recovery of the silk fabrics was improved for about 38% and 11%, respectively, as compared to the non-cross-linked fabrics, without significantly affecting the tensile strength retention of the fabrics.

Originality/value

This research model and analyze the effects of BTCA, β-CD and NTO concentrations on the grafting percentage and some properties of the treated samples for the first time.

Details

Pigment & Resin Technology, vol. 52 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 28 April 2020

Aminoddin Haji

The dyeing of cellulosic and proteinous fibers with natural and synthetic colorants usually needs large amounts of metal salts to promote the dyeing procedure. To get rid of the…

Abstract

Purpose

The dyeing of cellulosic and proteinous fibers with natural and synthetic colorants usually needs large amounts of metal salts to promote the dyeing procedure. To get rid of the necessity to use metal salts, plasma treatment and subsequent attachment of chitosan biopolymer were considered as green processes for surface functionalization of wool and cotton. The purpose of this paper is to investigate the effect of oxygen plasma treatment and attachment of chitosan on the dyeability of wool and cotton fabrics using walnut and weld as model natural dyes, as well as C.I. reactive blue 50 and C.I. acid blue 92 as model synthetic dyes.

Design/methodology/approach

Wool and cotton fabrics were modified with oxygen plasma and coated with chitosan solution. The un-modified and modified samples were dyed with the above-mentioned dyes under constant conditions. The color strength, color coordinates and fastness properties of the dyed samples were determined and compared.

Findings

The results showed that oxygen plasma treatment could improve the dyeability and fastness properties of wool and cotton fibers when dyed with all of the above-mentioned dyes. Attachment of chitosan to the plasma-treated samples significantly improved the dyeability of wool and cotton fibers with walnut, acid and reactive dyes. The fastness properties of the dyed samples were enhanced by plasma treatment and chitosan coating.

Originality/value

This study uses plasma treatment as an environmentally friendly pre-treatment for attachment of chitosan on wool and cotton. This process improved the dyeing properties of both fibers. The use of metal salts in not needed for dyeing of wool and cotton according to the investigated process.

Details

Pigment & Resin Technology, vol. 49 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 January 2014

Padma S. Vankar and Rama Shanker Sahu

A graft copolymer (PBW-g-PAM) of Moringa seed was prepared. The phosphate buffer washed seed powder and polyacrylamide were reacted, using ceric ion initiator. The grafted

Abstract

Purpose

A graft copolymer (PBW-g-PAM) of Moringa seed was prepared. The phosphate buffer washed seed powder and polyacrylamide were reacted, using ceric ion initiator. The grafted copolymer was tested for its efficiency for metal removal (Cr-VI) from tannery effluent and for color removal from textile effluent using standard spectroscopic methods. The paper aims to discuss these issues.

Design/methodology/approach

The PBW-g-PAM was prepared by standard method and characterized by FT-IR, SEM, UV-vis, XRD and DSC/TGA analyses.

Findings

The effects of PBW-g-PAM dose, contact time and pH on percent removal of Cr-VI and dye color, have been reported.

Originality/value

The efficiency of metal removal was shown to be 99 per cent in just 15 min. Similar results were obtained for efficient color removal from textile effluents. It is for the first time that graft polymer of Moringa seed has been used for metal and color removal.

Details

Pigment & Resin Technology, vol. 43 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 April 2017

Md. Asadul Hoque, Md. Anwarul Kabir Bhuiya, Md. Saiduzzaman, Md. Ashadul Islam and Mubarak A. Khan

This paper aim to comparatively study of mechanical properties of gamma radiation treated raw and polyethylene glycol modified bleached jute reinforced polyester composite. The…

Abstract

Purpose

This paper aim to comparatively study of mechanical properties of gamma radiation treated raw and polyethylene glycol modified bleached jute reinforced polyester composite. The natural fiber-reinforced composite has been a wide area of research, and it is the preferred choice due to its superior physical and mechanical properties like low density, stiffness and light weight. Among several natural fibers, jute is one that has good potential as reinforcement in polymer composite. Jute fibers biodegradability, low cost and moderate mechanical properties make it as a preferable reinforcement material in the development of polymer matrix composites.

Design/methodology/approach

In the present work, raw jute fabrics-reinforced polyester composite (as RJPC) and polyethylene glycol (PEG)-modified bleached jute fabrics-reinforced polyester composite (as MBJPC) were fabricated by the heat-press molding technique at 120°C for 5 min at a pressure of 5 tons. Prior to the composite formulation, low lignin content bleached jute fabrics were chemically modified with PEG for the better compatibility of the fabrics with the polyester matrix and enhancing elongation properties. All the composites irradiated with different gamma radiation dose in the range of 2 to 14 kGy.

Findings

The irradiated composites showed highest improved of mechanical properties at the 10 kGy γ-radiation dose. However, the hard and sunlight-sensitive high lignin content γ-RJPC showed higher mechanical properties except elongation properties compared to that of low lignin content γ-MBJPC.

Originality/value

After the γ-ray irradiation, both the γ-RJPC and γ-MBJPC developed high degree of cross-linking among the polyester molecules and thereto fabrics with the consequence of significant changed of surface morphology as observed by atomic force microscopy.

Details

World Journal of Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 130