Search results

1 – 10 of over 5000
Article
Publication date: 1 April 1983

H. McArthur

About 26,000 Airey Houses were erected during the post war years (1946–55) as part of the house building programme of that period. The Airey House is essentially a prefabricated…

Abstract

About 26,000 Airey Houses were erected during the post war years (1946–55) as part of the house building programme of that period. The Airey House is essentially a prefabricated concrete structure which was erected on site to form a box. This box was erected upon a concrete raft which acted as the foundation and floor of the dwelling. The basic box was formed from several framed ‘goal posts’ to which thin concrete cladding panels were fastened to the upright columns by copper wire. The vertical loading from the first floor and roof is taken on the vertical columns but may also be shared with the concrete cladding panels (see Figure 1).

Details

Structural Survey, vol. 1 no. 4
Type: Research Article
ISSN: 0263-080X

Article
Publication date: 10 July 2009

W.K. Chow, Min Lin and Diankui Liu

The fire response of structural reinforced concrete columns is usually justified by the reduction in ultimate load bearing capacity. This is due to the decrease in mechanical…

Abstract

Purpose

The fire response of structural reinforced concrete columns is usually justified by the reduction in ultimate load bearing capacity. This is due to the decrease in mechanical strength of steel and concrete upon exposure to a fire. In structural design, it is more desirable to consider the action of load directly. The concept of equivalent accidental load due to a fire might give more convenient structural design data. This paper aims to focus on these issues.

Design/methodology/approach

A theoretical analysis for the equivalent accidental load imposed on reinforced concrete columns (axially loaded columns, uniaxially loaded columns and biaxially loaded columns) exposed to four‐side fires is carried out. The test results of previous research are used as examples and for checking computations. After determining its temperature field, the equivalent accidental load due to fire is calculated using simplified methods. The fire resistance period of reinforced concrete columns can also be determined.

Findings

If the response of a structural element to a fire can be converted into an accidental load, it can be combined with other components such as wind load and earthquake action to give a total design load. With this method, the equivalent accidental load due to a fire and fire resistance of reinforced concrete columns at elevated temperature can be derived directly, and the process is very simple. The equivalent accidental load and fire resistance of reinforced concrete columns exposed to fire on one, two or three sides can also be derived by the same method. However, the thermal performance of steel and concrete cannot be considered during the calculation.

Originality/value

A simplified approach of equivalent accidental load due to fire is proposed. Much simpler guides can be drafted in structural fire design.

Details

Structural Survey, vol. 27 no. 3
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 7 July 2023

Ala'aldin Al-Hassoun and Rabab Allouzi

Concrete-filled double skin steel tubes (CFDST) columns are taken more attention due to their ability to withstand high structural loads in structures such as high-rise buildings…

Abstract

Purpose

Concrete-filled double skin steel tubes (CFDST) columns are taken more attention due to their ability to withstand high structural loads in structures such as high-rise buildings, bridges' piers, offshore and marine structures. This paper is intended to improve the CFDST column's capacity without the need to increase the column's size to maintain its lightweight by filling it with self-compacted concrete (SCC) containing nanoclay (NC).

Design/methodology/approach

First, experimental investigation is conducted to select the optimal NC percentage that improves the mechanical properties. Different mixing method, mixture ingredients, cement content, and NC percentage are considered. Then, slender and short CFDST columns are tested for axial capacity to investigate the effect of adding the optimum NC percentage on column's capacity and failure mode.

Findings

The test results show that adding 3% NC by cement weight using dry mixing method to SCC is the optimum ratio. It is concluded that adding 3% NC by cement weight increased the CFDST column's capacity, especially the specimens with higher slenderness ratio. Moreover, it is concluded that more specimens should be tested under various geometric and reinforcement details.

Originality/value

Recently, CFDST tube columns solve many structural and architectural problems that engineers have encountered in traditional systems. Therefore, more studies are required to design high-performance columns capable of carrying complex loads with high efficiency since the traditional design could not achieve the required performance. Since concrete contributes to a large portion in the axial capacity of the CFDST columns, it is proposed to improve the CFDST column's capacity without the need to increase the column's size to maintain its lightweight by filling it with (SCC containing NC. Previous research has affirmed the effectiveness of employing nanoclay in the concrete's workability, durability, microstructures, and mechanical properties.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 2 September 2019

Mahfoud Touhari and Ratiba Kettab Mitiche

Covering a fiber-reinforced concrete column (fiber reinforced plastic (FRP)) improves the performance of the column primarily. The purpose of this paper is to investigate the…

Abstract

Purpose

Covering a fiber-reinforced concrete column (fiber reinforced plastic (FRP)) improves the performance of the column primarily. The purpose of this paper is to investigate the behavior of small FRP concrete columns that are subject to axial pressure loading, in order to study the effect of many parameters on the effectiveness of FRP couplings on circular and square concrete columns.

Design/methodology/approach

These parameters include the shape of the browser (circular and square), whole core and cavity, square radius of square columns, concrete strength (low strength, normal and high), type of FRP (carbon and glass) and number of FRP (1–3) layers. The effective fibrillation failure strain was investigated and the effect of effective lateral occlusion pressure.

Findings

The results of the test showed that the FRP-coated columns improved significantly the final conditions of both the circular and square samples compared to the unrestricted columns; however, improvement of square samples was not as prominent as improvement in circular samples. The results indicated that many parameters significantly affected the behavior of FRP-confined columns. A new model for predicting compressive force and the corresponding strain of FRP is presented. A good relationship is obtained between the proposed equations and the current experimental results.

Originality/value

The average hoop strain in FRP wraps at rupture in FRP-confined concrete specimens can be much lower than that given by tensile coupon tests, meaning the theoretical assumption that the FRP-confined concrete cylinder ruptures when the FRP material tensile strength attained at its maximum is not suitable. Based on this observation, the effective peak strength and corresponding strain formula for FRP concrete confined columns must be based on the effective hoop rupture strain composite materials.

Details

International Journal of Structural Integrity, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 February 2021

Nurizaty Zuhan, Mariyana Aida Ab Kadir, Muhammad Najmi Mohamad Ali Mastor, Shek Poi Ngian and Abdul Rahman Mohd. Sam

Concrete-filled steel hollow (CFHS) column is an innovation to improve the performance of concrete or steel column. It is believed to have high compressive strength, good…

Abstract

Purpose

Concrete-filled steel hollow (CFHS) column is an innovation to improve the performance of concrete or steel column. It is believed to have high compressive strength, good plasticity and is excellent for seismic and fire performance as compared to hollow steel column without a filler.

Design/methodology/approach

Experimental and numerical investigation has been carried out to study the performance of CFHS having different concrete in-fill and shape of steel tube.

Findings

In this paper, an extensive review of experiment performed on CFHS columns at elevated temperature is presented in different types of concrete as filling material. There are three different types of concrete filling used by the researchers, such as normal concrete (NC), reinforced concrete and pozzolanic-fly ash concrete (FC). A number of studies have conducted experimental investigation on the performance of NC casted using recycled aggregate at elevated temperature. The research gap and the recommendations are also proposed. This review will provide basic information on an innovation on steel column by application of in-filled materials.

Research limitations/implications

Design guideline is not considered in this paper.

Practical implications

Fire resistance is an important issue in the structural fire design. This can be a guideline to define the performance of the CFHS with different type of concrete filler at various exposures.

Social implications

Utilization of waste fly ash reduces usage of conventional cement (ordinary Portland cement) in concrete production and enhances its performance at elevated temperature. The new innovation in CFHS columns with FC can reduce the cost of concrete production and at the same time mitigate the environmental issue caused by waste material by minimizing the disposal area.

Originality/value

Review on the different types of concrete filler in the CFHS column. The research gap and the recommendations are also proposed.

Details

Journal of Structural Fire Engineering, vol. 12 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 19 August 2021

Oliver Bahr

This paper aims to answer two questions. First, are there any differences in the fire performance of columns made of normal and of high-strength concrete? Second, under which…

Abstract

Purpose

This paper aims to answer two questions. First, are there any differences in the fire performance of columns made of normal and of high-strength concrete? Second, under which circumstances does the fire design govern the cross-sectional dimensions of concrete columns? Is it feasible to replace columns out of normal strength concrete by more slender high-strength concrete columns?

Design/methodology/approach

The author conducted numerical studies using the finite element code “Infocad” of the German company “Infograph”. The studies included the effect of different parameters on the fire performance of columns out of normal and high-strength concrete, i.e. the load ratio and eccentricity, boundary conditions and times of fire exposure.

Findings

Results from the numerical investigations showed that high-strength concrete columns suffer much more from heating than normal strength concrete columns. This is the outcome of the unfavourable mechanical properties of high-strength concrete at elevated temperatures. Although the relative fire performance of columns out of high-strength concrete is worse than that of columns out of normal strength concrete, initial load reserves are beneficial to achieve even high fire ratings.

Originality/value

Many researchers addressed in experimental and numerical studies the fire performance of columns out of normal and high-strength concrete. A special emphasis was often laid on the spalling of fire-exposed high-strength concrete. However, there are no systematic investigations when the fire design governs the cross-sectional dimensions of high-strength concrete columns. Based on a previous comparison of the relative fire performance of columns out of normal and high-strength concrete, this paper, hence, addresses the question whether there is a reasonable lower limit for the use of these columns. This is an important aspect for designers since there is a tendency to replace columns out of normal strength concrete by columns out of high-strength concrete. Higher concrete strengths allow for smaller cross sections of the columns, and designers may, hence, increase the usable space of buildings.

Details

Journal of Structural Fire Engineering, vol. 12 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 July 2020

Anjaly Nair and Osama (Sam) Salem

At elevated temperatures, concrete undergoes changes in its mechanical and thermal properties, which mainly cause degradation of strength and eventually may lead to the failure of…

Abstract

Purpose

At elevated temperatures, concrete undergoes changes in its mechanical and thermal properties, which mainly cause degradation of strength and eventually may lead to the failure of the structure. Retrofitting is a desirable option to rehabilitate fire damaged concrete structures. However, to ensure safe reuse of fire-exposed buildings and to adopt proper retrofitting methods, it is essential to evaluate the residual load-bearing capacity of such fire-damaged reinforced concrete structures. The focus of the experimental study presented in this paper aims to investigate the fire performance of concrete columns exposed to a standard fire, and then evaluate its residual compressive strengths after fire exposure of different durations.

Design/methodology/approach

To effectively study the fire performance of such columns, eight identical 200 × 200 × 1,500-mm high reinforced concrete columns test specimens were subjected to two different fire exposure (1- and 2-h) while being loaded with two different load ratios (20% and 40% of the column ultimate design axial compressive load). In a subsequent stage and after complete cooling down, residual compressive strength capacity tests were performed on each fire exposed column.

Findings

Experimental results revealed that the columns never regain its original capacity after being subjected to a standard fire and that the residual compressive strength capacity dropped to almost 50% and 30% of its ambient temperature capacity for the columns exposed to 1- and 2-h fire durations, respectively. It was also noticed that, for the tested columns, the applied load ratio has much less effect on the column’s residual compressive strength compared to that of the fire duration.

Originality/value

According to the unique outcomes of this experimental study and, as the fire-damaged concrete columns possessed considerable residual compressive strength, in particular those exposed to shorter fire duration, it is anticipated that with proper retrofitting techniques such as fiber-reinforced polymers (FRP) wrapping, the fire-damaged columns can be rehabilitated to regain at least portion of its lost load-bearing capacities. Accordingly, the residual compressive resistance data obtained from this study can be effectively used but not directly to adopt optimal retrofitting strategies for such fire-damaged concrete columns, as well as to be used in validating numerical models that can be usefully used to account for the thermally-induced degradation of the mechanical properties of concrete material and ultimately predict the residual compressive strengths and deformations of concrete columns subjected to different load intensity ratios for various fire durations.

Details

Journal of Structural Fire Engineering, vol. 11 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 May 2020

Khaled Ahmed Mahmoud

Previous works in constructing interaction diagrams have only focused on incorporating transient creep strain implicitly in the ultimate limit strain. The present paper aims to…

Abstract

Purpose

Previous works in constructing interaction diagrams have only focused on incorporating transient creep strain implicitly in the ultimate limit strain. The present paper aims to use different approaches to define concrete ultimate limit strain (failure strain) envelops at high temperatures for preloaded and unloaded, confined and unconfined, columns during heating are proposed. These approaches are chosen to understand the effect of using different techniques to determine transient creep strain on the resulted NuMu diagrams.

Design/methodology/approach

Transient creep strain is included within the concrete ultimate limit strain relationships, implicitly and explicitly, by four different ways, and accordingly, four different failure criteria are suggested. To define the concrete ultimate limit strain, studies are conducted to evaluate the compression strain corresponding to the maximal flexural capacity at elevated temperatures. In the analysis, the thermal and structural analyses are decoupled and, based on the resulted ultimate limit strain, the NuMu diagrams are constructed at different fire exposures.

Findings

The validity of the proposed model is established by comparing its predictions with experimental results found in the literature. Finally, comparative calculations regarding interaction diagrams obtained by the proposed model and by other methods found in the literature are performed. It was found that the proposed model predictions agree well with experimental results. It was also found that the suggested approaches, which include simplifications, reasonably predicted the exact column capacity.

Originality/value

The model.

Details

Journal of Structural Fire Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 14 June 2019

Abdurra’uf M. Gora, Jayaprakash Jaganathan, M.P. Anwar and H.Y. Leung

Advanced fibre-reinforced polymer (FRP) composites have been increasingly used over the past two decades for strengthening, upgrading and restoring degraded civil engineering…

Abstract

Purpose

Advanced fibre-reinforced polymer (FRP) composites have been increasingly used over the past two decades for strengthening, upgrading and restoring degraded civil engineering infrastructure. Substantial experimental investigations have been conducted in recent years to understand the compressive behaviour of FRP-confined concrete columns. A considerable number of confinement models to predict the compressive behaviour of FRP-strengthened concrete columns have been developed from the results of these experimental investigations. The purpose of this paper is to present a comprehensive review of experimental investigations and theoretical models of circular and non-circular concrete columns confined with FRP reinforcement.

Design/methodology/approach

The paper reviews previous experimental test results on circular and non-circular concrete columns confined with FRP reinforcement under concentric and eccentric loading conditions and highlights the behaviour and mechanics of FRP confinement in these columns. The paper also reviews existing confinement models for concrete columns confined with FRP composites in both circular and non-circular sections.

Findings

This paper demonstrates that the performance and effectiveness of FRP confinement in concrete columns have been extensively investigated and proven effective in enhancing the structural performance and ductility of strengthened columns. The strength and ductility enhancement depend on the number of FRP layers, concrete compressive strength, corner radius for non-circular columns and intensity of load eccentricity for eccentrically loaded columns. The impact of existing theoretical models and directions for future research are also presented.

Originality/value

Potential researchers will gain insight into existing experimental and theoretical studies and future research directions.

Details

World Journal of Engineering, vol. 16 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 November 2019

Saranya Ilango and Sunil Mahato

Concrete in-filled stainless steel square tubular column combines both the benefits of concrete and steel material, providing enhanced ductility and high compressive strength to…

Abstract

Purpose

Concrete in-filled stainless steel square tubular column combines both the benefits of concrete and steel material, providing enhanced ductility and high compressive strength to the vertical structural members. Other advantages include high stiffness, better resistance to corrosion, increased pace of construction, enhanced bearing capacity, etc. The purpose of this paper is to understand the various behavioural aspects of concrete in-filled cold-formed duplex stainless steel (CI-CFDSS) square tubular column under axial compressive loads and to assess its structural performance.

Design/methodology/approach

In the current paper, the performance of CI-CFDSS square tubular column is numerically investigated under uniform static loading using finite element technique. The numerical study was based on an experimental investigation, which was carried out earlier, in order to study the effects of concrete strength and shape of stainless steel tube on the strength and behaviour of CI-CFDSS square tubular column. The experimental CI-CFDSS square tubular column has a length equal to 450 mm, breadth of 150 mm, width of 150 mm, thickness of 6 mm and a constant ratio of length to overall depth equal to 3. Numerical modelling of the experimental specimen was carried out using ABAQUS software by providing appropriate material properties. Non-linear finite element analysis was performed and the load vs axial deflection curve of the numerical CI-CFDSS square tubular column obtained was validated with the results of the experiment. In order to understand the behaviour of CI-CFDSS square tubular column under axial compressive loads, a parametric study was performed by varying the grade of concrete, type of stainless steel, thickness of stainless steel tube and shape of cross section. From the results, the performance of CI-CFDSS square tubular column was comparatively studied.

Findings

When the grade of concrete was increased the deformation capacity of the CI-CFDSS square tubular column reduced but showed better load carrying capacity. The steel tube made of duplex stainless steel exhibited enhanced performance in terms of load carrying capacity and axial deformation than the other forms, i.e. austenitic and ferritic stainless steel. The most suitable cross section for the CI-CFDSS square tubular column with respect to its performance is rectangular cross section and variation of the steel tube thickness led to the change of overall dimensions of the N-CI-CFDSS-SHS1C40 square tubular column showing marginal difference in performance.

Originality/value

The research work presented in this manuscript is authentic and could contribute to the understanding of the behavioural aspects of CI-CFDSS square tubular column under axial compressive loads.

Details

International Journal of Structural Integrity, vol. 11 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 5000