Search results

1 – 10 of over 25000
Article
Publication date: 23 December 2020

Robert Kuehnen, Maged Youssef and Salah El-Fitiany

The design of buildings for fire events is essential to ensure occupant safety. Supplementary to simple prescriptive methods, performance-based fire design can be applied to…

Abstract

Purpose

The design of buildings for fire events is essential to ensure occupant safety. Supplementary to simple prescriptive methods, performance-based fire design can be applied to achieve a greater level of safety and flexibility in design. To make performance-based fire design more accessible, a time-equivalent method can be used to approximate a given natural fire event using a single standard fire with a specific duration. Doing so allows for natural fire events to be linked to the wealth of existing data from the standard fire scenario. The purpose of this paper is to review and assess the application of an existing time-equivalent method in the performance-based design of reinforced concrete (RC) beams.

Design/methodology/approach

The assessment is established by computationally developing the moment-curvature response of RC beam sections during fire exposure. The sectional response due to natural fire and time equivalent fire are compared.

Findings

It is shown that the examined time equivalent method is able to predict the sectional response with suitable accuracy for performance-based design purposes.

Originality/value

The research is the first to provide a comprehensive evaluation of the moment-curvature diagram of RC beams using time-equivalent standard fire scenarios that model realistic fire scenarios.

Details

Journal of Structural Fire Engineering, vol. 12 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 22 June 2017

Jean-Christophe Mindeguia, Guillaume Cueff, Virginie Dréan and Gildas Auguin

The fire resistance of wooden structures is commonly based on the calculation or measurement of the char layer. Designers usually estimate the char layer at the surface of a…

Abstract

Purpose

The fire resistance of wooden structures is commonly based on the calculation or measurement of the char layer. Designers usually estimate the char layer at the surface of a structural element by using analytical models. Some of these charring models can be found in regulations, as Eurocode 5. These analytical models, quite simple to use, are only reliable for the standard fire curve. In that case, the design of the structure is qualified as “prescriptive-based design” and can lead to oversizing the structure. Optimization of a structure can be achieved by using a “Performance-based design”, where realistic fire scenarios are taken into account by means of more or less complex models [parametric fires, two-zones models, computational fluid dynamics (CFD)]. For these so-called “natural fires”, no model for charring is available. The purpose of this paper is to present a novel methodology for applying a performance-based design to a simple timber structure.

Design/methodology/approach

This paper presents the development of a numerical model aiming to simulate the thermal transfer and charring in wood, under any type of thermal exposure, including non-standard fire curves. After presenting the physical background, the model is calibrated and compared to existing experimental studies on wood samples exposed to different fire curves. The model is then used as a tool for assessing the fire resistance of a common wooden structure exposed to standard and non-standard fire curves.

Findings

The results show that the fire resistance is obviously dependent on the choice of the thermal exposure. The reliability of the model is also discussed and the importance of taking into account particular reactions in wood during heating is underlined.

Originality/value

One aim of this paper is to show the opportunity to apply a performance-based approach when designing a wooden structure. It shows that more knowledge of the material behaviour under non-standard fires is still needed, especially during the decay phase.

Details

Journal of Structural Fire Engineering, vol. 9 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 March 2021

Muhannad R. Alasiri and Mustafa Mahamid

Standard fire resistance curves such as ASTM E119 have been used for so long in structural fire practice. The issue with use of these curves that they do not represent real fire

Abstract

Purpose

Standard fire resistance curves such as ASTM E119 have been used for so long in structural fire practice. The issue with use of these curves that they do not represent real fire scenarios. As a result, the alternatives have been to either conduct experiments or find other tools to represent a real fire scenario. Therefore, the purpose of this paper is to understand the temperature effects resulted from a designed fire on steel beams and whether the standard fire curves represent a designed fire scenario.

Design/methodology/approach

Computational fluid dynamics (CFD) models were developed to simulate a designed fire scenario and to understand the structural responses on the beams under elevated temperatures. Consequently, the results obtained from the CFD models were compared with the results of three-dimensional (3D) non-linear finite element (FE) models developed by other researchers. The developed FE models were executed using a standard fire curve (ASTM E119). A parametric study including two case studies was conducted.

Findings

Results obtained from performing this study showed the importance of considering fire parameters such as fuel type and flame height during the thermal analysis compared to the standard fire curves, and this might lead to a non-conservative design as compared to the designed fire scenario. The studied cases showed that the steel beams experienced more degradation in their fire resistance at higher load levels under designed fires. Additionally, the models used the standard fire curves underestimated the temperatures at the early stages.

Originality/value

This paper shows results obtained by performing a comparison study of models used ASTM E119 curve and a designed fire scenario. The value of this study is to show the variability of using different fire scenarios; thus, more studies are required to see how temperature history curves can be used to represent real fire scenarios.

Details

Journal of Structural Fire Engineering, vol. 12 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 13 March 2017

Anthony Deloge Ariyanayagam and Mahen Mahendran

This paper aims to present the details of a study undertaken to develop an energy-based time equivalent approach to obtain the fire resistance ratings (FRRs) of light gauge steel…

Abstract

Purpose

This paper aims to present the details of a study undertaken to develop an energy-based time equivalent approach to obtain the fire resistance ratings (FRRs) of light gauge steel frame (LSF) walls exposed to realistic design fire curves.

Design/methodology/approach

The energy-based time equivalent method was developed based on the performance of a structural member exposed to a realistic design fire curve in comparison to that of the standard fire time – temperature curve. The FRR predicted by the energy-based method for LSF wall configurations exposed to both rapid and prolonged fires were compared with those from fire design rules and finite element analyses (FEA).

Findings

The proposed energy method can be used to obtain the FRR of LSF walls in case of prolonged fires and cannot be used for rapid fires as the computed FRRs were higher than the results from FEA and fire design rules due to the influence of thermal bowing and its magnification effects at a high temperature gradient across the studs for rapid fires.

Originality/value

The energy-based time equivalent method was developed based on equal fire severity principles. Three different wall configurations were considered and exposed to both rapid and prolonged fires. The FRR obtained from the energy-based method were compared with fire design rules and FEA results to assess the use of the energy-based method to predict the FRR of LSF walls.

Details

Journal of Structural Fire Engineering, vol. 8 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 4 March 2020

Eva Lubloy

The aim of the research was to investigate the effect of concrete strength on the fire resistance of structures. At first, it may seem contradictory that higher concrete strengths…

Abstract

Purpose

The aim of the research was to investigate the effect of concrete strength on the fire resistance of structures. At first, it may seem contradictory that higher concrete strengths can decrease the fire resistance of building structures. However, if the strength of the concrete exceeds a maximum value, the risk of spalling (the detachment of the concrete surface) significantly.

Design/methodology/approach

Prefabricated structural elements are often produced with higher strength. The higher concrete strengths generally do not cause a reduction in the load bearing capacity, but it can have serious consequences in case of structural fire design. Results of two prefabricated elements, namely, one slab (TT shaped panel) and one single layer wall panel, were examined. Results of the specimen with the originally designed composition and a specimen with modified concrete composition were examined, were polymer fibres were added to prevent spalling.

Findings

As a result of the experiments, more strict regulations in the standards the author is suggested including more strict regulations in the standards. It has been proved that to ensure the fire safety of the reinforced concrete structures, it is required after polymer fibres even in lower concrete strength class than prescribed by the standard. In addition, during the classification and evaluation of structures, it is advisable to introduce an upper limit of allowed concrete strength for fire safety reasons.

Originality/value

As a result of the experiments, the author suggests including more strict regulations in the standards. It has been proved that to ensure the fire safety of the reinforced concrete structures, it is necessary to require the addition of polymer fibres even in lower concrete strength class than prescribed by the standard. In addition, during the classification and evaluation of structures, it is advisable to introduce an upper limit of allowed concrete strength for fire safety reasons.

Details

Journal of Structural Fire Engineering, vol. 11 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 August 1994

Bill Hirst

Argues for the introduction of better fire standards as a response tothe withdrawal of The Fire Precautions (Places of Work) Regulations1992 which were due to come into effect in…

592

Abstract

Argues for the introduction of better fire standards as a response to the withdrawal of The Fire Precautions (Places of Work) Regulations 1992 which were due to come into effect in January of this year. Proposes that introducing better standards offers many benefits and would not be as expensive as the Government supposed. Concludes that in fact the benefits, such as improved fire safety, reduced insurance premiums etc., should outweigh the costs.

Details

Facilities, vol. 12 no. 8
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 1 January 1998

Suzanne Donovan

The European Union is currently undergoing a programme of new legislation relating to health and safety. Changes in fire safety legislation and standards, though much publicised…

666

Abstract

The European Union is currently undergoing a programme of new legislation relating to health and safety. Changes in fire safety legislation and standards, though much publicised by many of the leading companies in the fire protection industry, are still causing widespread confusion. Among the issues that the changes are raising is the speed with which the new legislation and standards have to be implemented and the costs involved in effecting a radical and immediate changeover to new standard equipment.

Details

Facilities, vol. 16 no. 1/2
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 8 November 2023

Marcus Achenbach and Guido Morgenthal

The design check regarding the fire resistance of concrete slabs can be easily performed using tabulated values. These tables are based on experimental results, but the level of…

Abstract

Purpose

The design check regarding the fire resistance of concrete slabs can be easily performed using tabulated values. These tables are based on experimental results, but the level of safety, which is obtained by this approach, is not known. On the other hand, performance-based methods are more accepted, but require a target reliability as performance criterion. Hence, there is a need for calibration of the performance-based methods using the results of the “traditional” descriptive approach.

Design/methodology/approach

The calibration is performed for a single span concrete slab, where the axis distance of the reinforcement is chosen according to Eurocode 2 for a defined fire rating. A “standard” compartment is selected to cover typical fields of application. The opening factor is considered as parameter to obtain the maximum peak temperatures in the compartment. A Monte Carlo simulation, in combination with a response surface method, is set up to calculate the probabilities of failure.

Findings

The results indicate that the calculated reliability index for a standard is within the range, which has been used for the derivation of safety and combination factors in the Eurocodes. It can be observed that members designed for a fire rating R90 have a significant increase in the structural safety for natural fires compared to a design for a fire rating R30.

Originality/value

The level of safety, which is obtained by a design based on tabulated values, is quantified for concrete slabs. The results are a necessary input for the calibration of performance-based methods and could stimulate discussions among scientists and building authorities.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 December 1998

Siu Ming Lo

The majority of the population in Hong Kong live in multi‐storey high‐rise buildings. The safety conditions of these buildings are a major concern of the Government and the…

2967

Abstract

The majority of the population in Hong Kong live in multi‐storey high‐rise buildings. The safety conditions of these buildings are a major concern of the Government and the public. Fire safety is one of the major concerns especially after several large fire tragedies in the past few years. The Hong Kong Government has introduced a mandatory safety assurance requirement which is called the “Building Safety Inspection Scheme”. Under this scheme, building owners are required to appoint appropriate building professionals to assess the safety level of their buildings and to recommend appropriate actions. One of the major aspects relates to the fire safety. In order to ensure uniform standards and easy administration, the Hong Kong Government intends to publish a Code of Practice on the assessment for use by building professionals. This paper proposes a fire safety assurance approach including the fire safety assessment method which may form the basis of the Code of Practice.

Details

Structural Survey, vol. 16 no. 4
Type: Research Article
ISSN: 0263-080X

Keywords

Open Access
Article
Publication date: 7 December 2022

Milad Shabanian and Nicole Leo Braxtan

Thermomechanical behavior of intermediate-size beam-to-wall assemblies including Glulam-beams connected to cross-laminated timber (CLT) walls with T-shape steel doweled…

Abstract

Purpose

Thermomechanical behavior of intermediate-size beam-to-wall assemblies including Glulam-beams connected to cross-laminated timber (CLT) walls with T-shape steel doweled connections was investigated at ambient temperature (AT) and after and during non-standard fire exposure.

Design/methodology/approach

Three AT tests were conducted to evaluate the load-carrying capacity and failure modes of the assembly at room temperature. Two post-fire performance (PFP) tests were performed to study the impact of 30-min (PFP30) and 60-min (PFP60) partial exposure to a non-standard fire on the residual strength of the assemblies. The assemblies were exposed to fire in a custom-designed frame, then cooled and loaded to failure. A fire performance (FP) test was conducted to study the fire resistance (FR) during non-standard fire exposure by simultaneously applying fire and a mechanical load equal to 65% of the AT load carrying capacity.

Findings

At AT, embedment failure of the dowels followed by splitting failure at the Glulam-beam and tensile failure of the epoxy between the layers of CLT-walls were the dominant failure modes. In both PFP tests, the plastic bending of the dowels was the only observed failure mode. The residual strength of the assembly was reduced 14% after 30 min and 37% after 60 min of fire exposure. During the FP test, embedment failure of timber in contact with the dowels was the only major failure mode, with the maximum rate of displacement at 51 min into the fire exposure.

Originality/value

This is the first time that the thermomechanical performance of such an assembly with a full-contact connection is presented.

Details

Journal of Structural Fire Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of over 25000