Search results

1 – 10 of over 18000
Article
Publication date: 15 June 2010

Yuchai Sun, Xiaogang Chen, Zhonghao Cheng and Xunwei Feng

The purpose of this paper is to present the results of a study on heat transfer through a textile assembly consisting of fabric and air layers based on a theoretical model capable…

Abstract

Purpose

The purpose of this paper is to present the results of a study on heat transfer through a textile assembly consisting of fabric and air layers based on a theoretical model capable of dealing with conductive, convective and radioactive heat transfer.

Design/methodology/approach

Quantificational results were given out by the aid of finite element (FE) analysis software MSC MARC Mentat.

Findings

Significant findings through this paper include the change in heat flux against time and the transit temperature distribution at the cross‐section of the fabric assembly. The size of the air gaps has a significant influence on the heat transfer. The balance heat flux drops by 40 per cent when the air gap increases from 2 to 10 mm. The influence of the air gap tends to become smaller as the air gap is further increased. The number of fabric layers in the textile assembly has a noted influence, more so when the ambient temperature is lower. Comparisons between the theoretical and tested results show a good agreement.

Originality/value

This paper has established a new method for clothing comfort study by making use of a general purpose FE method software package.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 1995

Himadri Chattopadhyay and Sukanta K. Dash

The conception of a heat function, just like the stream function used ina laminar two dimensional incompressible flow field visualization, has beenintroduced to visualize the…

Abstract

The conception of a heat function, just like the stream function used in a laminar two dimensional incompressible flow field visualization, has been introduced to visualize the convective heat transfer or the flow of energy around a sphere when the sphere is either being cooled or heated by a stream of fluid flowing around it. The heat function is developed in a spherical polar coordinate and is used to generate the heat lines around the sphere. The heat lines essentially show the magnitude and direction of energy transfer around the sphere with and without the existence of a finite radial velocity at the surface. The steady state hydrodynamic field around the sphere is numerically obtained up to a maximum Reynolds number of 100 and the corresponding thermal field has been obtained by solving the steady state energy equation. The field properties thus obtained are utilized to form the heat function, which becomes an effective tool for visualization of convective heat transfer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 5 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Sara Armou, Mustapha Ait Hssain, Soufiane Nouari, Rachid Mir and Kaoutar Zine-Dine

The purpose of this study is to investigate the impact of varying baffle height and spacing distance on heat transfer and cooling performance of electronic components in a baffled…

Abstract

Purpose

The purpose of this study is to investigate the impact of varying baffle height and spacing distance on heat transfer and cooling performance of electronic components in a baffled horizontal channel, using a Cu-H2O nanofluid under mixed convection and laminar flow.

Design/methodology/approach

The mathematical model is two-dimensional and comprises a system of four governing equations, such as the conservation of continuity, momentum and energy. To obtain numerical solutions for these equations, the finite volume method was used for discretization. A validation process was performed by comparing this study’s results with those of previously published studies. The comparison revealed a close agreement. The numerical study was performed for a wide range of key parameters: The baffle height (0 ≤ h ≤ 0.7), the spacing distance between baffle and blocks (0.25 ≤ w ≤ 3), the Grashof and Reynolds numbers are kept equal to 104 and 75, respectively, the channel aspect ratio is L/H = 10, and the volume fraction of Cu nanoparticles is fixed at φ = 5%.

Findings

The results of the study reveal a significant improvement in heat transfer in terms of total Nusselt number of the top and bottom hot components, which exhibited an improvement of 16.89% and 17.23% when the baffle height increases from h = 0 to h = 0.7. Additionally, the study found that reducing the distance between the baffle and the electronic components up to a certain limit can improve the heat transfer rate. Therefore, the optimal height of the baffle was found to be no lower than 0.6, and the recommended distance between the heaters and the baffle was 0.5.

Originality/value

This study provides valuable insights into the optimization of the design of baffled channels for improved heat transfer performance. The findings of study can be used to improve heat exchangers and cooling systems in various applications. The use of Cu-H2O nanofluid under mixed convection and laminar flow conditions in channel with baffle and electronic components is also unique, making this study an original contribution to the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 October 2022

R.S. Ransing

This study aims to understand the difference between irreversibility in heat and work transfer processes. It also aims to explain that Helmholtz or Gibbs energy does not represent…

Abstract

Purpose

This study aims to understand the difference between irreversibility in heat and work transfer processes. It also aims to explain that Helmholtz or Gibbs energy does not represent “free” energy but is a measure of loss of Carnot (reversible) work opportunity.

Design/methodology/approach

The entropy of mass is described as the net temperature-standardised heat transfer to mass under ideal conditions measured from a datum value. An expression for the “irreversibility” is derived in terms of work loss (Wloss) in a work transfer process, unaccounted heat dissipation (Qloss) in a heat transfer process and loss of net Carnot work (CWnet) opportunity resulting from spontaneous heat transfer across a finite temperature difference during the process. The thermal irreversibility is attributed to not exploiting the capability for extracting work by interposing a combination of Carnot engine(s) and/or Carnot heat pump(s) that exchanges heat with the surrounding and operates across the finite temperature difference.

Findings

It is shown, with an example, how the contribution of thermal irreversibility, in estimating reversible input work, amounts to a loss of an opportunity to generate the net work output. The opportunity is created by exchanging heat with surroundings whilst transferring the same amount of heat across finite temperature difference. An entropy change is determined with a numerical simulation, including calculation of local entropy generation values, and results are compared with estimates based on an analytical expression.

Originality/value

A new interpretation of entropy combined with an enhanced mental image of a combination of Carnot engine(s) and/or Carnot heat pump(s) is used to quantify thermal irreversibility.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 December 2022

Damodara Priyanka, Pratibha Biswal and Tanmay Basak

This study aims to elucidate the role of curved walls in the presence of identical mass of porous bed with identical heating at a wall for two heating objectives: enhancement of…

Abstract

Purpose

This study aims to elucidate the role of curved walls in the presence of identical mass of porous bed with identical heating at a wall for two heating objectives: enhancement of heat transfer to fluid saturated porous beds and reduction of entropy production for thermal and flow irreversibilities.

Design/methodology/approach

Two heating configurations have been proposed: Case 1: isothermal heating at bottom straight wall with cold side curved walls and Case 2: isothermal heating at left straight wall with cold horizontal curved walls. Galerkin finite element method is used to obtain the streamfunctions and heatfunctions associated with local entropy generation terms.

Findings

The flow and thermal maps show significant variation from Case 1 to Case 2 arrangements. Case 1 configuration may be the optimal strategy as it offers larger heat transfer rates at larger values of Darcy number, Dam. However, Case 2 may be the optimal strategy as it provides moderate heat transfer rates involving savings on entropy production at larger values of Dam. On the other hand, at lower values of Dam (Dam ≤ 10−3), Case 1 or 2 exhibits almost similar heat transfer rates, while Case 1 is preferred for savings of entropy production.

Originality/value

The concave wall is found to be effective to enhance heat transfer rates to promote convection, while convex wall exhibits reduction of entropy production rate. Comparison between Case 1 and Case 2 heating strategies enlightens efficient heating strategies involving concave or convex walls for various values of Dam.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2007

Victoria Timchenko, John Reizes and Eddie Leonardi

The development of novel cooling techniques is needed in order to be able to substantially increase the performance of integrated electronic circuits whose operations are limited…

Abstract

Purpose

The development of novel cooling techniques is needed in order to be able to substantially increase the performance of integrated electronic circuits whose operations are limited by the maximum allowable temperature. Air cooled micro‐channels etched in the silicon substrate have the potential to remove heat directly from the chip. For reasonable pressure drops, the flow in micro‐channels is inherently laminar, so that the heat transfer is not very large. A synthetic jet may be used to improve mixing, thereby considerably increasing heat transfer. This paper seeks to address this issue.

Design/methodology/approach

CFD has been used to study the flow and thermal fields in forced convection in a two‐dimensional micro‐channel with an inbuilt synthetic jet actuator. The unsteady Navier‐Stokes and energy equations are solved. The effects of variation of the frequency of the jet at a fixed pressure difference between the ends of the channel and with a fixed jet Reynolds number, have been studied with air as the working fluid. Although the velocities are very low, the compressibility of air has to be taken into account.

Findings

The use of a synthetic jet appreciably increases the rate of heat transfer. However, in the frequency range studied, whilst there are significant changes in the details of the flow, due primarily to large phase changes with frequency, there is little effect of the frequency on the overall rate heat transfer. The rates of heat transfer are not sufficiently large for air to be a useful cooling medium for the anticipated very large heat transfer rates in future generations of microchips.

Research limitations/implications

The study is limited to two‐dimensional flows so that the effect of other walls is not considered.

Practical implications

It does not seem likely that air flowing in channels etched in the substrate of integrated circuits can be successfully used to cool future, much more powerful microchips, despite a significant increase in the heat transfer caused by synthetic jet actuators.

Originality/value

CFD is used to determine the thermal performance of air flowing in micro‐channels with and without synthetic jet actuators as a means of cooling microchips. It has been demonstrated that synthetic jets significantly increase the rate of heat transfer in the micro‐channel, but that changing the frequency with the same resulting jet Reynolds number does not have an effect on the overall rate of heat transfer. The significant effect of compressibility on the phase shifts and more importantly on the apparently anomalous heat transfer from the “cold” air to the “hot” wall is also demonstrated.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 May 2020

Erdem Çiftçi and Adnan Sözen

The purpose of this study is to experimentally and numerically scrutinize the heat transfer enhancement in pool boiling and condensation by changing the hydrophilicity or…

637

Abstract

Purpose

The purpose of this study is to experimentally and numerically scrutinize the heat transfer enhancement in pool boiling and condensation by changing the hydrophilicity or hydrophobicity properties of the working fluid, i.e. by use of nanofluid solution.

Design/methodology/approach

For specifying the effects of nanoparticle concentration on heat transfer properties, two different nanofluid solutions (h-BN/DCM and SiO2/DCM) at three different volumetric concentrations were prepared and tested under different heat flux conditions. Boiling curves, alterations in pressure with heat flux and heat transfer coefficients for both boiling and condensation processes were obtained and viscosity measurements were performed for dichloromethane (DCM) and each working fluid was prepared. In addition, a series of numerical simulations, via computational fluid dynamics approach, was performed for specifying the evaporation–condensation phenomena and temperature and velocity distributions.

Findings

Nanoparticle addition inside the base fluid increased the thermal characteristics of the base fluid significantly. For the experimental results of h-BN/DCM nanofluid, the increment rate in heat transfer coefficient for saturation boiling, after-saturation boiling and condensation processes was found as 27.59%, 14.44% and 15%, respectively.

Originality/value

The novelty of this comparison study is that there is no such experimental and numerical comparison study in literature for DCM fluid, which concentrates on thermal performance enhancement and compares the effect of different kinds of nanoparticles on heat transfer characteristics for boiling–condensation processes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 January 2018

Kalidasan K., R. Velkennedy, Jan Taler, Dawid Taler, Pawel Oclon and Rajesh Kanna P.

This study aims to perform a numerical study of air convection in a rectangular enclosure with two isothermal blocks and oscillating bottom wall temperature under laminar flow…

Abstract

Purpose

This study aims to perform a numerical study of air convection in a rectangular enclosure with two isothermal blocks and oscillating bottom wall temperature under laminar flow conditions. The geometry of the enclosure contains two isothermal blocks placed equidistant along the streamwise direction. The top wall is assumed to be cold (low temperature). The bottom wall temperature is either kept as constant or sinusoidally varied with time. The vertical walls are considered as adiabatic. The flow is diagonally upwards and assisted by the buoyancy force. The inlet is positioned at the bottom of the left wall, and the outlet is placed at the top of the right wall. The parameters considered in this paper are Rayleigh number (104-106), Prantdl number (0.71), amplitude of temperature oscillation (0-0.5) and the period (0.2). The effects of these parameters on heat transfer and fluid flow inside the open cavity are studied. The periodic results of fluid flow are illustrated with streamlines and the heat transfer is represented by isotherms and time-averaged Nusselt number. By virtue of increasing buoyancy, the heat transfer accelerates with an increase in the Rayleigh number. Also, the heat transfer is intensive with an increase in the bottom wall temperature.

Design/methodology/approach

The momentum and energy equations are solved simultaneously. The energy equation (3) is initially solved using the alternating direction implicit (ADI) method. The results of the energy equation are updated into the vorticity equation. The unsteady vorticity transport equation is also solved using the ADI method. Dimensionless time step equal to 0.01 is used for high Ra (105 and 106) and 0.001 is used for low Ra (104). Convergence criteria of 10−5 is used during the vorticity, stream function and temperature calculations, as the sum of error should be very small.

Findings

Numerical study of air convection in a rectangular enclosure with two isothermal blocks and oscillating bottom wall temperature is performed under laminar flow condition. The effect of the isothermal blocks on the heat transfer is analyzed for different Rayleigh numbers and the following conclusions are arrived. The hydrodynamic blockage effect is subdued by the isothermal heating of square blocks. Based on the streamline diagrams, it is found that the formation of vortices is greatly influenced by the Rayleigh number when all the walls are exposed to a constant wall temperature. The influence of amplitude on the heat transfer is remarkable on the wall exposed to oscillating temperature and is subtle on the opposite static cold wall. The heat transfer increases with an increase in the Rayleigh number and temperature.

Research limitations/implications

Flow is assumed to be two-dimensional and laminar subject to oscillatory boundary condition. The present investigation aims to study natural convection inside the cavity filled with air whose bottom wall is subject to time-variant temperature. The buoyancy is further intensified through two isothermal square blocks placed equidistant along the streamwise direction at mid-height.

Originality/value

The authors have developed a CFD solver to simulate the situation. Effect of Rayleigh number subject to oscillatory thermal boundary condition is simulated. Streamline contour and isotherm contour are presented. Local and average Nusselt numbers are presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 November 2018

Yuan Ma, Rasul Mohebbi, Mohammad Mehdi Rashidi and Zhigang Yang

This paper aims to numerically investigate the natural convection heat transfer of multi-wall carbon nanotubes (MWCNTs)-water nanofluid in U-shaped enclosure equipped with a hot…

269

Abstract

Purpose

This paper aims to numerically investigate the natural convection heat transfer of multi-wall carbon nanotubes (MWCNTs)-water nanofluid in U-shaped enclosure equipped with a hot obstacle by using the lattice Boltzmann method.

Design/methodology/approach

The combination of the three topics (U-shaped enclosure, different positions of the hot obstacle and MWCNTs-water nanofluid) is innovative in the present study. In total, 15 different positions of the hot obstacle have been arranged, and the effects of pertinent parameters such as Rayleigh numbers, the solid volume fraction of the MWCNTs nanoparticles on the flow field, temperature distribution and the rate of heat transfer inside the enclosure are also investigated.

Findings

It is found that the average Nusselt number increased by raising the Rayleigh number, and so did the nanoparticle solid volume fraction regardless the position of the hot obstacle. Moreover, enclosures where the hot obstacle is located at the bottom region proved to provide a better rate of heat transfer at high Rayleigh number (106). It is concluded that at a low Ra number (103-105), the higher heat transfer rate and Nu number will be obtained when the hot obstacle is located in the left or right channel.

Originality/value

In the literature, no trace of studying the natural convection of nanofluids in U-shaped enclosures with heating obstacles was found. Also, MWCNTs were less used as nanoparticles. As the natural convection of nanofluids in thermal engineering applications would expand the existing knowledge, the current researchers conducted a numerical study of the natural convection of Maxwell nanofluid with MWCNTs in U-shaped enclosure equipped with a hot obstacle by using lattice Boltzmann method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 February 2021

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

The purpose of this study is to analyze the heat transfer and flow enhancement of an Al2O3-water nanofluid filling an inclined channel whose lower wall is embedded with…

Abstract

Purpose

The purpose of this study is to analyze the heat transfer and flow enhancement of an Al2O3-water nanofluid filling an inclined channel whose lower wall is embedded with periodically placed discrete hydrophobic heat sources. Formation of a thin depletion layer of low viscosity over each hydrophobic heated patch leads to the velocity slip and temperature jump condition at the interface of the hydrophobic patch.

Design/methodology/approach

The mixed convection of the nanofluid is analysed based on the two-phase non-homogeneous model. The governing equations are solved numerically through a control volume approach. A periodic boundary condition is adopted along the longitudinal direction of the modulated channel. A velocity slip and temperature jump condition are imposed along with the hydrophobic heated stripes. The paper has validated the present non-homogeneous model with existing experimental and numerical results for particular cases. The impact of temperature jump condition and slip velocity on the flow and thermal field of the nanofluid in mixed convection is analysed for a wide range of governing parameters, namely, Reynolds number (50 ≤ Re ≤ 150), Grashof number ( 103Gr5×104), nanoparticle bulk volume fraction ( 0.01φb0.05), nanoparticle diameter ( 30dp60) and the angle of inclination ( 60°σ60°).

Findings

The presence of the thin depletion layer above the heated stripes reduces the heat transfer and augments the volume flow rate. Consideration of the nanofluid as a coolant enhances the rate of heat transfer, as well as the entropy generation and friction factor compared to the clear fluid. However, the rate of increment in heat transfer suppresses by a significant margin of the loss due to enhanced entropy generation and friction factor. Heat transfer performance of the channel diminishes as the channel inclination angle with the horizontal is increased. The paper has also compared the non-homogeneous model with the corresponding homogeneous model. In the non-homogeneous formulation, the nanoparticle distribution is directly affected by the slip conditions by virtue of the no-normal flux of nanoparticles on the slip planes. For this, the slip stripes augment the impact of nanoparticle volume fraction compared to the no-slip case.

Originality/value

This paper finds that the periodically arranged hydrophobic heat sources on the lower wall of the channel create a significant augmentation in the volume flow rate, which may be crucial to augment the transport process in mini- or micro-channels. This type of configuration has not been addressed in the existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 18000