Search results

21 – 30 of 491
Article
Publication date: 10 June 2022

Hooman Imani, Kamaladin Gharanjig and Zahra Ahmadi

The purpose of this study is simultaneous dyeing and mordanting of wool yarns with extracted cochineal dye and aluminum sulfate to the reduction of consuming energy, water and…

Abstract

Purpose

The purpose of this study is simultaneous dyeing and mordanting of wool yarns with extracted cochineal dye and aluminum sulfate to the reduction of consuming energy, water and time.

Design/methodology/approach

The dyeing process was optimized using the response surface methodology (RSM) approach. pH, dyeing duration and the presence of additives were chosen as variables and the color strength of samples as a response. The color characteristics and fastness attributes of samples dyed in the best condition were evaluated and compared to pre-mordant dyeing outcomes on wool yarns.

Findings

The best conditions for deep dyeing wool with cochineal dye were as follows: pH 2.5, time 110 min and the ratio of aluminum: additives 1:0 at 100 °C. Color strength of dyed wool yarns by one-bath and pre-mordant dyeing methods were approximately the same. Wool yarns can dye to the on-bath dyeing method such that the dyed samples have similar color strength and fastness properties to pre-mordant dyeing.

Social implications

Wool dyeing processes that use one-bath dyeing consume less water and produce fewer effluents. As a result, this strategy conserves water and energy for a higher quality of life. The findings of this study, in general, aid environmental protection.

Originality/value

A novel one-bath process for dyeing wool with cochineal dye at heavy depths is introduced. RSM was used to optimize the procedure and determine effective parameters on the color strength of dyed wools. Using extracted cochineal dye and aluminum sulfate in a simultaneous dyeing technique, good color fastness qualities on wool fibers were achieved.

Details

Pigment & Resin Technology, vol. 52 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 January 2023

Haymanot Enawgaw

The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton…

Abstract

Purpose

The purpose of this paper is to give compiled information on previously applied cotton fabric surface modifications. The paper covered most of the modifications done on cotton fabric to improve its properties or to add some functional properties. The paper presented mostly studied research works that brought a significant surface improvement on cotton fabric.

Design/methodology/approach

Different previous works on surface modifications of cotton fabrics such as pilling, wrinkle and microbial resistance, hydrophobicity, cationization, flame retardancy and UV-protection characteristics were studied and their methods of modification including the main findings are well reported in this paper.

Findings

Several modification treatments on surface modification of cotton fabrics indicated an improvement in the desired properties in which the modification is needed. For instance, the pilling tendency, wrinkling, microbial degradation and UV degradation drawbacks of cotton fabric can be overcome through different modification techniques.

Originality/value

To the best of the author’s knowledge, there are no compressive documents that covered all the portions presented in this review. The author tried to cover the surface modifications done to improve the main properties of cotton fabric.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 7 March 2023

Shahin Hossain, M. Abdul Jalil, Rois Uddin Mahmud and Abdul Kader

In recent years, natural dyes have attracted significant attention globally because of growing public awareness of the environment and health hazards associated with synthetic…

Abstract

Purpose

In recent years, natural dyes have attracted significant attention globally because of growing public awareness of the environment and health hazards associated with synthetic dyes. Natural dyes can provide special aesthetic qualities as well as the ethical significance of a product which is environmentally friendly. By keeping this burning issue in mind, this study aims to explore the dyeing properties of various unexplored environmentally friendly natural dyes.

Design/methodology/approach

In this study, the aqueous extract of coconut leaves is used for dyeing purpose. The silk and jute fabrics were dyed with the extract alone as well as in combination with metal salts as mordants by employing pre-, meta- and postmordanting techniques. The dyeing properties of the colored samples were evaluated by measuring their color strength; CIEL*a*b* values; and color fastness to washing, light and rubbing.

Findings

A yellow shade was achieved when the fabric samples were dyed solely with the extract. However, shade variations were observed when different mordants and mordanting techniques were applied. In all the cases, metallic salts improved the color fastness properties of dyed samples to washing, light and rubbing especially for the silk fabric.

Originality/value

To the best of the authors’ knowledge, this is the first report on a natural dye extracted from the leaves of coconut. Leaf as the source of dye has added an extra advantage, as it is reproducible and can be collected easily without harming the plants. The reported dye could be an attractive choice for sustainable and eco-friendly dyeing.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 March 2018

Jiangping Yuan, Ming Zhu, Baohui Xu and Guangxue Chen

The purpose of this paper is provide a broad view for the standardization efforts of color quality evaluation of color 3D printing techniques. Further, this review paper…

Abstract

Purpose

The purpose of this paper is provide a broad view for the standardization efforts of color quality evaluation of color 3D printing techniques. Further, this review paper demonstrates the processes and color properties of most color 3D printing techniques with specific devices and applications to extend the range of possible memberships of standardization group.

Design/methodology/approach

Six color 3D printing techniques including plastic-based, paper-based, powder-based, organism-based, food-based and metal-based color 3D printing have been introduced and illustrated with colorization principles and forming features in detail. Moreover, for printed 3D color objects, literature about color measurement, color specification and color reproduction are described and analyzed, respectively.

Findings

Four color 3D printing techniques including plastic-based, paper-based, powder-based and food-based color 3D printing show great affinity toward standardization of color quality evaluation, while their colorization principles indicate that it is difficult with a single standard frame. It is possible to develop a completed color quality evaluation standard for color 3D printing based on approaches in color 2D printing when color measurement method and devices are standardized together.

Originality/value

The paper provides an important guide focusing on the efforts to standardize the colorization processes and color quality evaluation of the color 3D printing techniques.

Article
Publication date: 30 May 2019

Dominik Kapović, Mirela Rožić, Marina Vukoje and Branka Lozo

This paper aims to analyse the tack stability measurement readings of thermochromic offset inks. For this purpose, three reversible leuco-dye formed thermochromic inks were used…

Abstract

Purpose

This paper aims to analyse the tack stability measurement readings of thermochromic offset inks. For this purpose, three reversible leuco-dye formed thermochromic inks were used to evaluate their tack. The used inks differ in their activation temperature, colour, drying mechanism, viscosity and chemical content. Thermochromic offset inks differ from conventional inks in formulation and size of colourants due to the presence of the microcapsules.

Design/methodology/approach

Printing inks in offset lithography must have sufficient tack so they can be transported from a reservoir onto the substrate. The ink transfer takes place through the ink splitting by inking rollers, printing plate and blanket transport. An IGT Tackoscope device was used to produce the dynamic readings of ink tack as a function of distribution and splitting time. The data can be used for prediction of the ink press stability under controlled settings, such as temperature.

Findings

This research explains the temperature and velocity influence on the tack stability measurement readings of thermochromic inks. It also gives an insight of the chemical compounds that dictate the tack measuring reading results.

Originality/value

Development of new printing inks, such as thermochromic printing inks, may affect the printing of different products. The research was conducted due to a lack of available data for the tack of thermochromic inks.

Details

Pigment & Resin Technology, vol. 48 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 October 2023

Junling Wu, Longfei Sun and Long Lin

This study aims to dye silk with natural pigments extract of Coreopsis tinctoria, by treating the fabrics with appropriate mordant under suitable dyeing conditions, to achieve…

33

Abstract

Purpose

This study aims to dye silk with natural pigments extract of Coreopsis tinctoria, by treating the fabrics with appropriate mordant under suitable dyeing conditions, to achieve good dyeing depth, fastness and ultraviolet (UV) protection.

Design/methodology/approach

Firstly, single factor experiments were used to determine the basic dyeing conditions of Coreopsis tinctoria. The optimal process conditions for direct dyeing were determined through orthogonal experiments. After that, the dyeing with mordant was used. Based on the previously determined optimal process conditions, silk fabrics were dyed with different mordanting methods, with different mordants and mordant dosages. The dyeing results were compared, in terms of the K/S values of the dyed fabrics, to determine the most appropriate dyeing conditions with mordant.

Findings

The extract of Coreopsis tinctoria can dye silk fabrics satisfactorily. Good dyeing depth and fastness can be obtained by using suitable dyeing methods and dyeing conditions, especially when using the natural mordant pomegranate rind and the rare earth mordant neodymium oxide. The silk fabrics dyed with Coreopsis tinctoria have good UV resistance, which allows a desirable finishing effect to be achieved while dyeing, using a safe and environmentally friendly method.

Research limitations/implications

The composition of Coreopsis tinctoria is complex, and the specific composition of colouring the silk fibre has not been determined. There are many factors that affect the dyeing experiment, which have an impact on the experimental results.

Practical implications

The results of this study may help expand the application of Coreopsis tinctoria beyond medicine.

Originality/value

To the best of the authors’ knowledge, this paper is the first report on dyeing silk with the extract of Coreopsis tinctoria achieving good dyeing results. Its depth of staining and staining fastness were satisfactory. Optimum dyeing method and dyeing conditions have been identified. The fabric dyed with Coreopsis tinctoria has good UV protection effect, which is conducive to improving the application value of the dyeing fabric. The findings help offer a new direction for the application of medicinal plants in the eco-friendly dyeing of silk.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 February 2016

Sangsung Park, Juhwan Kim, Hongchul Lee, Dongsik Jang and Sunghae Jun

An increasing amount of attention is being paid to three-dimensional (3D) printing technology. The technology itself is based on diverse technologies such as laser beams and…

3262

Abstract

Purpose

An increasing amount of attention is being paid to three-dimensional (3D) printing technology. The technology itself is based on diverse technologies such as laser beams and materials. Hence, 3D printing technology is a converging technology that produces 3D objects using a 3D printer. To become technologically competitive, many companies and nations are developing technologies for 3D printing. So to know its technological evolution is meaningful for developing 3D printing in the future. The paper aims to discuss these issues.

Design/methodology/approach

To get technological competitiveness of 3D printing, the authors should know the most important and essential technology for 3D printing. An understanding of the technological evolution of 3D printing is needed to forecast its future technologies and build the R & D planning needed for 3D printing. In this paper, the authors propose a methodology to analyze the technological evolution of 3D printing. The authors analyze entire patent documents related to 3D printing to construct a technological evolution model. The authors use the statistical methods such as time series regression, association analysis based on graph theory, and principal component analysis for patent analysis of 3D printing technology.

Findings

Using the proposed methodology, the authors show the technological analysis results of 3D printing and predict its future aspects. Though many and diverse technologies are developed and involved in 3D printing, the authors know only a few technologies take lead the technological evolution of 3D printing. In this paper, the authors find this evolution of technology management for 3D printing.

Practical implications

If not all, most people would agree that 3D printing technology is one of the leading technologies to improve the quality of life. So, many companies have developed a number of technologies if they were related to 3D printing. But, most of them have not been considered practical. These were not effective research and development for 3D printing technology. In the study, the authors serve a methodology to select the specific technologies for practical used of 3D printing.

Originality/value

Diverse predictions for 3D printing technology have been introduced in many academic and industrial fields. Most of them were made by subjective approaches depended on the knowledge and experience of the experts concerning 3D printing technology. So, they could be fluctuated according to the congregated expert groups, and be unstable for efficient R & D planning. To solve this problem, the authors study on more objective approach to predict the future state of 3D printing by analyzing the patent data of the developed results so far achieved. The contribution of this research is to take a new departure for understanding 3D printing technology using objective and quantitative methods.

Details

Industrial Management & Data Systems, vol. 116 no. 1
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 3 July 2017

Amir Khalaj Asadi, Morteza Ebrahimi and Mohsen Mohseni

The purpose of this work was to express a facile method to fabricate microcapsules containing linseed oil with melamine-urea-formaldehyde (MUF) shell in the presence of…

Abstract

Purpose

The purpose of this work was to express a facile method to fabricate microcapsules containing linseed oil with melamine-urea-formaldehyde (MUF) shell in the presence of polyvinylpyrrolidone (PVP) as an emulsifier. These microcapsules may be used in self-healing coating formulations.

Design/methodology/approach

In this work, different types of PVP (i.e., PVP with different molecular weights or K values) were used as emulsifiers and colloid protectors to encapsulate linseed oil in an MUF shell. Moreover, the effect of agitation rate on the morphology of the microcapsules was investigated. Microcapsule morphology and particle size distribution were evaluated using optical microscopy and scanning electron microscopy. Thermal studies were performed using a thermo-gravimetric analysis technique and chemical structure of materials was characterized by using Fourier transform infrared analysis.

Findings

In this work, microcapsules with a regular spherical shape and a shell thickness of about 330 nm were fabricated. The results revealed that the use of PVP in the fabrication of MUF could facilitate the synthesis process by eliminating the necessity of pH control during the reaction. In fact, the pH of the reaction media must be precisely controlled in conventional processes. The yield of microencapsulation was found to be 86.5 per cent when a high molecular weight of PVP (PVP K-90) was used. It was also found that the surface morphology of microcapsules became smoother when PVP K-90 was used. The results showed that the surface roughness and the average particle size decreased with an increase in stirring intensity. Mean diameter of the prepared microcapsules ranged from 34 to 346 μmin for various synthesis conditions.

Research limitations/implications

This work is limited to the encapsulation of a hydrophobic liquid (such as linseed oil) by an in situ polymerisation of amino resins.

Practical implications

The presented results can be used by researchers (in academia and industry) who are working in the field of fabrication microcapsules, in various applications such as pharmaceuticals, electrophoretic displays, textiles, carbonless copy papers, cosmetics, printing and self-healing materials.

Social implications

PVP is considered as an environmentally friendly emulsifier. Therefore, this process is less harmful to the environment. In addition, the prepared microcapsules may be used in self-healing coatings, which helps in reducing maintenance costs for buildings and steel structures.

Originality/value

Ethylene maleic anhydride and styrene maleic anhydride are usually used as emulsifiers in conventional methods for the preparation of amino resin microcapsules. These methods require an intensive and precise pH control to obtain favourable microcapsules, while in the present research, a facile method was used to fabricate MUF microcapsules containing linseed oil without needing any pH control during the reaction.

Article
Publication date: 8 May 2018

Amir Khalaj Asadi, Morteza Ebrahimi and Mohsen Mohseni

The purpose of this investigation is to develop a facile method to encapsulate a sunlight-curable silicone-based resin into a melamine–urea–formaldehyde (MUF) shell in the…

Abstract

Purpose

The purpose of this investigation is to develop a facile method to encapsulate a sunlight-curable silicone-based resin into a melamine–urea–formaldehyde (MUF) shell in the presence of polyvinylpyrrolidone (PVP) as an emulsifier. These microcapsules can be used in self-healing coating formulations.

Design/methodology/approach

MUF microcapsules containing a sunlight-curable core (methacryloxypropyl-terminated polydimethylsiloxane, MAT-PDMS) have been fabricated by means of in situ polymerisation of an oil-in-water emulsion using PVP as an efficient and environmentally advantageous stabiliser. The effects of agitation rate and PVP concentration on the microencapsulation process have been investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The chemical structure and thermal stability of the microcapsules have been studied using Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The solvent resistance of the microcapsules has been determined as well.

Findings

It has been revealed that the pH of the reaction mixture remained almost constant during the reaction, which simplified the process. It has also been observed that the microencapsulation yield improved and the microcapsules’ surface morphology became smoother when a high PVP content was used. With an increase in stirring rate from 600 to 1,200 rpm, the surface roughness and the average particle size decreased. The mean diameter of the prepared microcapsules ranged from 32.1 to 327.1 µm depending on the synthesis conditions. It was demonstrated that the microcapsules had a high capacity for MAT-PDMS encapsulation (more than 88 Wt.%). The solvent stability of the microcapsules against different polar, semi-polar and non-polar solvents was also evaluated.

Research limitations/implications

This research is limited to the encapsulation of a hydrophobic and sunlight curable liquid (such as MAT-PDMS) by means of in situ polymerisation of amino resins.

Practical implications

The results can be used by researchers working on the fabrication of microcapsules for applications such as drugs, electrophoretic inks, electrophoretic displays, intumescent fire-retardant coatings and self-healing materials.

Social implications

In self-healing coatings, healing agents which can be cured by UV irradiation or sunlight are envisaged attractive because they are catalyst-free, environmentally friendly and relatively inexpensive. PVP is an environmentally friendly emulsifier. The prepared microcapsules can be used in self-healing coatings to help in reducing maintenance costs for buildings and steel structures.

Originality/value

The novel aspect of this work is the development of a sunlight-curable silicone-based resin that was encapsulated in a MUF shell in the presence of PVP. A simple method was used to fabricate MUF microcapsules containing MAT-PDMS without the need to control pH during the reaction. Conventional methods for the preparation of amino resin microcapsules require an intensive and precise pH control to obtain favourable microcapsules. MAT-PDMS can be cured by sunlight and is catalyst-free, environmentally friendly and relatively inexpensive.

Article
Publication date: 3 April 2017

Julien Gardan

This paper aims to present a technical approach to evaluate the quality of textures obtained by an inkjet during binder jetting in 3D printing on a powder bed through contours…

Abstract

Purpose

This paper aims to present a technical approach to evaluate the quality of textures obtained by an inkjet during binder jetting in 3D printing on a powder bed through contours detection to improve the quality of the surface printed according to the result of the assembly between the inkjet and a granular product.

Design/methodology/approach

The manufacturing process is based on the use of computer-aided design and a 3D printer via binder jetting. Image processing measures the edge deviation of a texture on the granular surface with the possibility of implementing a correction in an active assembly through a “design for manufacturing” (DFM) approach. Example application is presented through first tests.

Findings

This approach observes a shape alteration of the printed image on a 3D printed product, and the work used the image processing method to improve the model according to the DFM approach.

Originality/value

This paper introduces a solution for improving the texture quality on 3D printed products realized via binder jetting. The DFM approach proposes an active assembly by compensating the print errors in upstream of a product life cycle.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

21 – 30 of 491