Search results

1 – 7 of 7
Article
Publication date: 2 September 2019

Vivekanandan D., Sakthivel M., Srinivasa Moorthy S. and Ajith Arul Daniel S.

In this study, TiO2 is used to enhance the mechanical properties of the composite material containing agave Americana fiber and polyester resin.

Abstract

Purpose

In this study, TiO2 is used to enhance the mechanical properties of the composite material containing agave Americana fiber and polyester resin.

Design/methodology/approach

Agave Americana fiber was first treated with 5% of NaOH, and the composition of treated and untreated fiber was kept constant, whereas the particulate and resin were alternatively used. The handlay method is used to fabricate the composite plates. The morphology of the composites was studied using scanning electron microscopy (SEM).

Findings

The composite was composed of 30% treated agave Americana, 10% of TiO2 particulates and 60% of a polyester resin for better and enhanced mechanical properties.

Practical implications

The composite can be used for aero-structural components, automobile components and other areas where light-weight components are required.

Originality/value

A new type of agave Americana fiber with TiO2 and polyester resin composite was fabricated and investigated.

Details

Pigment & Resin Technology, vol. 48 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 21 October 2022

Antonella Estefania Bergesse, Alexis Rafael Velez, Liliana Cecilia Ryan and Valeria Nepote

The aim of this work was to evaluate the efficiency of subcritical conditions using different water–ethanol mixtures to recover antioxidant compounds from soybean seed coats…

Abstract

Purpose

The aim of this work was to evaluate the efficiency of subcritical conditions using different water–ethanol mixtures to recover antioxidant compounds from soybean seed coats (SSCs).

Design/methodology/approach

SSCs were subjected to high temperature and pressure conditions, using ethanol–water mixtures as extractive solvent, to obtain phenolic and flavonoid compounds with antioxidant activity. A mathematical model, namely one-site desorption kinetic model, was used to describe the extraction kinetics.

Findings

Temperature, solvent mass flow rate and solvent composition were studied, and the best extraction conditions were defined by a screening design. The maximum concentration of phenolics was obtained at 220 °C, 50% of ethanol and 2.5 g/min of solvent mass flow rate and a high antioxidant capacity toward different techniques was achieved. The one-site desorption kinetic model showed that before 30 min under optimal conditions, more than 90% of phenolics and flavonoids were recovered, a shorter extraction time than the commonly used at normal pressure and room temperature.

Originality/value

The seed coat is a major by-product of soybean processing, and it only markets as a low value ruminant feed. To date, there are no reports on the extract phenolics from SSCs by means of this methodology. The extraction technique described in this study provides a potential alternative for extraction of bioactive compounds from SSCs. This study contributes to adding value to this industrial waste and, ultimately, to optimize the postharvest production chain of soybean grains.

Details

British Food Journal, vol. 125 no. 6
Type: Research Article
ISSN: 0007-070X

Keywords

Article
Publication date: 8 June 2018

Rokbi Mansour, Ati Abdelaziz and Aiche Fatima Zohra

The literature reveals there is a limited knowledge regarding the extraction of long natural fibers, in particular those extracted from leaves. This investigation aims to present…

Abstract

Purpose

The literature reveals there is a limited knowledge regarding the extraction of long natural fibers, in particular those extracted from leaves. This investigation aims to present the extraction process and the characterization of long natural cellulose fibers from doum palm leaves (Hyphaene thebaica L.), with properties suitable for polymeric composite materials and textile applications.

Design/methodology/approach

The resulting H. thebaica L. fibers were identified using Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The physical properties of the extracted fibers were measured to estimate the reliability of extraction conditions. Mechanical properties were evaluated to determine ultimate strength, Young’s modulus and strain-at-failure of the fibers of the doum leaves.

Findings

The following properties of the doum palm are listed in this paper: physical properties of doum palm fibers (H. thebaica L.), TGA, XRD of doum palm fibers, tensile properties of doum palm fibers and surface morphology of doum palm fibers.

Research limitations/implications

Like synthetic fibers, the inclusion of short or long natural fibers into the polymer matrix can increase tensile, flexural and compressive strengths of these matrixes. Compared to the short-length natural fibers, longer-length fibers provide better reinforcements and therefore accord higher performances to the composites. Long fibers can also provide exceptional opportunities to develop a new class of advanced lightweight composites and have the potential to rival glass fiber in the manufacture of composite materials, using matrix materials, such as polypropylene, epoxy and phenolic resins.

Originality/value

The following values are presented in this paper: density of doum palm fibers = 1.14-1.40 g/cm², linear density (Tex) = 33.10 ±11.5, equivalent diameter (µm) = 178.72 ± 41.7, diameter (µm) = 137.02-220.42, tensile strength (MPa) = 124.84-448.10, Young’s modulus (GPa) = 8.06-19.59, strain-at-failure (%) = 0.81-2.86.

Details

Research Journal of Textile and Apparel, vol. 22 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 30 November 2021

Gözde Konuk Ege, Hüseyin Yüce, Özge Akay, Hasbi Öner and Garip Genç

This paper aims to address the production of biocomposite nanofibers using luffa natural fibers and polyaniline conductive polymer/polyethylene oxides (PANI/PEO).

Abstract

Purpose

This paper aims to address the production of biocomposite nanofibers using luffa natural fibers and polyaniline conductive polymer/polyethylene oxides (PANI/PEO).

Design/methodology/approach

In this study, luffa natural fibers are extracted by chemical method. After mixing the treated luffa (TL) with the PANI/PEO solution, TL/PANI/PEO nanofibers were produced by electrospinning (ES) method under different ES parameters to examine the optimal conditions for nanofiber production. Then TL/PANI/PEO biocomposite nanofibers prepared in different weight ratios were produced to analyze the effects of luffa in the morphology and thermal properties of the biocomposite nanofibers. The characterization analysis of TL/PANI/PEO biocomposite nanofibers was performed by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analysis methods.

Findings

The analysis shows that different weight ratios of TL to PANI/PEO changed the morphology of the membrane. When increasing the weight ratio of TL, the morphological structure of TL/PANI/PEO transformed from nanofiber structure to thin film structure. The appearance of O—H peaks in the FTIR results proved the existence of TL in PANI/PEO nanofibers (membrane). Moreover, an increase in the weight ratio of luffa from 2% to 7.5% leads to an increase in the peak intensity of the O—H group. Regarding DSC analysis, biocomposite nanofibers improved the thermal properties. According to all results, 2%wt TL/PANI/PEO showed optimal morphological properties.

Originality/value

Plant cellulose was extracted from the luffa, one of the natural fibers, by method of alkali treatment. A new type of biocomposite nanofibers was produced using TL blend with PANI via electrospinning method.

Details

Pigment & Resin Technology, vol. 52 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 January 2023

Murat Demir and Yasemin Seki

The purpose of this study is to investigate surface treatments and fiber types on adhesion properties polylactic acid (PLA) three-dimensional (3D) parts printed on woven fabrics.

Abstract

Purpose

The purpose of this study is to investigate surface treatments and fiber types on adhesion properties polylactic acid (PLA) three-dimensional (3D) parts printed on woven fabrics.

Design/methodology/approach

The cotton, flax and jute fabrics were exposed to alkali, hydrogen peroxide, stearic acid and ionic liquid treatments to modify surface characteristics before PLA 3D printing. The modification efficiency was assessed with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) analyses. Then, fused deposition modeling (FDM) printer and PLA filament were used for 3D printing onto the untreated and treated fabrics. The adhesion strength between the fabrics and PLA 3D parts were tested according to DIN 53530 via universal tensile tester.

Findings

The fabric structure is effective on adhesion force and greater values were observed for plain weave fabrics. Maximum separation forces were obtained for alkali pretreated fabrics among jute and cotton. Hydrogen peroxide treatment also increased adhesion forces for jute and cotton fabrics while decreasing for flax fabrics. Stearic acid and ionic liquid treatments reduced adhesion forces compared to untreated fabrics. Treatments are effective to alter adhesion via changing surface chemistry, surface morphology and fabric physical properties but display different effects related to fabric material.

Originality/value

This study provides experimental information about effects of different fiber types and surface treatments on adhesion strength of PLA 3D parts. There is limited research about comprehensive observation on 3D printing on cellulosic-woven fabrics.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 August 2021

Atin Sumihartati, Wiah Wardiningsih, Naelly Al Kautsar, Muhammad Permana, Samuel Pradana and Ryan Rudy

The purpose of this study is to explore the potential of Cordyline Australis fibers as an alternate raw material for textile.

Abstract

Purpose

The purpose of this study is to explore the potential of Cordyline Australis fibers as an alternate raw material for textile.

Design/methodology/approach

The water retting method was used to extract the fiber. Cordyline Australis fibers were characterized in terms of the morphology of fibers (fiber cross-sectional and longitudinal), fiber chemical functional groups, tensile strength and elongation, fineness, fiber length, moisture regain and friction coefficient.

Findings

Cordyline Australis fiber strands consist of several individual fibers. At the longitudinal section, the fiber cells appeared as long cylindrical tubes with a rough surface. The cross-section of the Cordyline Australis fibers was irregular but some were oval. The key components in the fibers were cellulose, hemicellulose and lignin. The tensile strength of the fiber per bundle was 2.5 gf/den. The elongation of fibers was 13.15%. The fineness of fiber was 8.35 Tex. The average length of the fibers was 54.72 cm. Moisture Regain for fiber was 8.59%. The friction coefficient of fibers was 0.16. The properties of the fiber showed that the Cordyline Australis fiber has the potential to be produced into yarn.

Originality/value

To the best of the author's knowledge, there is no scientific article focused on the Cordyline Australis fibers. Natural fibers from the leaves of the Cordyline Australis plant could be used as an alternate material for textile.

Details

Research Journal of Textile and Apparel, vol. 26 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 11 May 2020

S. Raj Sachin, T. Kandasamy Kannan and Rathanasamy Rajasekar

The purpose of this study is to carry out an investigation of the role of the wood particle size on the mechanical properties of poly lactic acid (PLA)-reinforced neem fiber…

Abstract

Purpose

The purpose of this study is to carry out an investigation of the role of the wood particle size on the mechanical properties of poly lactic acid (PLA)-reinforced neem fiber biocomposite.

Design/methodology/approach

Composite test specimens were processed by reinforcing neem wood flour (NWF) in two different particle sizes, micro-sized NWF (MNWF) and nano-sized NWF (NNWF) separately into PLA. Composites were extruded at four different fiber loadings (10, 15, 20 and 25 Wt.%) into PLA matrix. The MNWF and NNWF had particle sizes varying from 5 to 15 µm and 10 to 15 nm, respectively.

Findings

Tensile strength, flexural strength and impact strength of PLA increased with fiber reinforcement for both the MNWF and NNWF cases. The NNWF-reinforced PLA composite at 20 Wt.% fiber loading proved to be the best composite that had outstanding mechanical properties in this research.

Practical implications

The developed composite can be used as a substitute for conventional plywood for furniture, building infrastructure and interior components for the automobile, aircraft and railway sectors.

Originality/value

A new biocomposite had been fabricated by using PLA and NWF and had been tested for its mechanical characteristics.

Details

Pigment & Resin Technology, vol. 49 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 7 of 7