Search results

1 – 10 of over 5000
Article
Publication date: 22 June 2022

Ryan R. Ford, Akhilesh Kumar Pal, Scott C.E. Brandon, Manjusri Misra and Amar K. Mohanty

The fused filament fabrication (FFF) process is an additive manufacturing technique used in engineering design. The mechanical properties of parts manufactured by FFF are…

Abstract

Purpose

The fused filament fabrication (FFF) process is an additive manufacturing technique used in engineering design. The mechanical properties of parts manufactured by FFF are influenced by the printing parameters. The mechanical properties of rigid thermoplastics for FFF are well defined, while thermoplastic elastomers (TPE) are uncommonly investigated. The purpose of this paper is to investigate the influence of extruder temperature, bed temperature and printing speed on the mechanical properties of a thermoplastic elastomer.

Design/methodology/approach

Regression models predicting mechanical properties as a function of extruder temperature, bed temperature and printing speed were developed. Tensile specimens were tested according to ASTM D638. A 3×3 full factorial analysis, consisting of 81 experiments and 27 printing conditions was performed, and models were developed in Minitab. Tensile tests verifying the models were conducted at two selected printing conditions to assess predictive capability.

Findings

Each mechanical property was significantly affected by at least two of the investigated FFF parameters, where printing speed and extruder temperature terms influenced all mechanical properties (p < 0.05). Notably, tensile modulus could be increased by 21%, from 200 to 244 MPa. Verification prints exhibited properties within 10% of the predictions. Not all properties could be maximized together, emphasizing the importance of understanding FFF parameter effects on mechanical properties when making design decisions.

Originality/value

This work developed a model to assess FFF parameter influence on mechanical properties of a previously unstudied thermoplastic elastomer and made property predictions within 10% accuracy.

Details

Rapid Prototyping Journal, vol. 28 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 April 2022

Lina Syazwana Kamaruzzaman and Yingxin Goh

This paper aims to review recent reports on mechanical properties of Sn-Bi and Sn-Bi-X solders (where X is an additional alloying element), in terms of the tensile properties

Abstract

Purpose

This paper aims to review recent reports on mechanical properties of Sn-Bi and Sn-Bi-X solders (where X is an additional alloying element), in terms of the tensile properties, hardness and shear strength. Then, the effects of alloying in Sn-Bi solder are compared in terms of the discussed mechanical properties. The fracture morphologies of tensile shear tested solders are also reviewed to correlate the microstructural changes with mechanical properties of Sn-Bi-X solder alloys.

Design/methodology/approach

A brief introduction on Sn-Bi solder and reasons to enhance the mechanical properties of Sn-Bi solder. The latest reports on Sn-Bi and Sn-Bi-X solders are combined in the form of tables and figures for each section. The presented data are discussed by comparing the testing method, technical setup, specimen dimension and alloying element weight percentage, which affect the mechanical properties of Sn-Bi solder.

Findings

The addition of alloying elements could enhance the tensile properties, hardness and/or shear strength of Sn-Bi solder for low-temperature solder application. Different weight percentage alloying elements affect differently on Sn-Bi solder mechanical properties.

Originality/value

This paper provides a compilation of latest report on tensile properties, hardness, shear strength and deformation of Sn-Bi and Sn-Bi-X solders and the latest trends and in-depth understanding of the effect of alloying elements in Sn-Bi solder mechanical properties.

Details

Soldering & Surface Mount Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 16 November 2021

M. Balasubramanian, Thozhuvur Govindaraman Loganathan and R. Srimath

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Abstract

Purpose

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Design/methodology/approach

Fabrication methods and material characterization of various hybrid bio-composites are analyzed by studying the tensile, impact, flexural and hardness of the same. The natural fiber is a manufactured group of assembly of big or short bundles of fiber to produce one or more layers of flat sheets. The natural fiber-reinforced composite materials offer a wide range of properties that are suitable for many engineering-related fields like aerospace, automotive areas. The main characteristics of natural fiber composites are durability, low cost, low weight, high specific strength and equally good mechanical properties.

Findings

The tensile properties like tensile strength and tensile modulus of flax/hemp/sisal/Coir/Palmyra fiber-reinforced composites are majorly dependent on the chemical treatment and catalyst usage with fiber. The flexural properties of flax/hemp/sisal/coir/Palmyra are greatly dependent on fiber orientation and fiber length. Impact properties of flax/hemp/sisal/coir/Palmyra are depended on the fiber content, composition and orientation of various fibers.

Originality/value

This study is a review of various research work done on the natural fiber bio-composites exhibiting the factors to be considered for specific load conditions.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 February 2021

Chrysoula Pandelidi, Tobias Maconachie, Stuart Bateman, Ingomar Kelbassa, Sebastian Piegert, Martin Leary and Milan Brandt

Fused deposition modelling (FDM) is increasingly being explored as a commercial fabrication method due to its ability to produce net or near-net shape parts directly from a…

Abstract

Purpose

Fused deposition modelling (FDM) is increasingly being explored as a commercial fabrication method due to its ability to produce net or near-net shape parts directly from a computer-aided design model. Other benefits of technology compared to conventional manufacturing include lower cost for short runs, reduced product lead times and rapid product design. High-performance polymers such as polyetherimide, have the potential for FDM fabrication and their high-temperature capabilities provide the potential of expanding the applications of FDM parts in automotive and aerospace industries. However, their relatively high glass transition temperature (215 °C) causes challenges during manufacturing due to the requirement of high-temperature build chambers and controlled cooling rates. The purpose of this study is to investigate the mechanical properties of ULTEM 1010, an unfilled polyetherimide grade.

Design/methodology/approach

In this research, mechanical properties were evaluated through tensile and flexural tests. Analysis of variance was used to determine the significance of process parameters to the mechanical properties of the specimens, their main effects and interactions. The fractured surfaces were analysed by scanning electron microscopy and optical microscopy and porosity was assessed by X-ray microcomputed tomography.

Findings

A range of mean tensile and flexural strengths, 60–94 MPa and 62–151 MPa, respectively, were obtained highlighting the dependence of performance on process parameters and their interactions. The specimens were found to fracture in a brittle manner. The porosity of tensile samples was measured between 0.18% and 1.09% and that of flexural samples between 0.14% and 1.24% depending on the process parameters. The percentage porosity was found to not directly correlate with mechanical performance, rather the location of those pores in the sample.

Originality/value

This analysis quantifies the significance of the effect of each of the examined process parameters has on the mechanical performance of FDM-fabricated specimens. Further, it provides a better understanding of the effect process parameters and their interactions have on the mechanical properties and porosity of FDM-fabricated polyetherimide specimens. Additionally, the fracture surface of the tested specimens is qualitatively assessed.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 October 2018

Shilpesh R. Rajpurohit and Harshit K. Dave

The purpose of this paper to study the tensile strength of the fused deposition modelling (FDM) printed PLA part. In recent times, FDM has been evolving from rapid prototyping to…

2261

Abstract

Purpose

The purpose of this paper to study the tensile strength of the fused deposition modelling (FDM) printed PLA part. In recent times, FDM has been evolving from rapid prototyping to rapid manufacturing where parts fabricated by FDM process can be directly used for application. However, application of FDM fabricated part is significantly affected by poor and anisotropic mechanical properties. Mechanical properties of FDM part can be improved by proper selection of process parameters.

Design/methodology/approach

In the present study, three process parameter, namely, raster angle, layer height and raster width, have been selected to study their effect on tensile properties. Parts are fabricated as per ASTM D638 Type I standard.

Findings

It has been observed that the highest tensile strength obtained at 0° raster angle. Lower value of layer height is observed to be good for higher tensile strength because of higher bonding area between the layers. At higher value of raster width, tensile strength is improved up to certain extent after which presence of void reduces the tensile strength.

Originality/value

In the present investigation, layer height and raster width have been also varied along with raster angle to study their effect on the tensile strength of FDM printed PLA part.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 June 2016

Mica Grujicic, Jennifer Snipes, S Ramaswami and Chian-Fong Yen

The weld region obtained during friction stir welding (FSW) of metallic materials (including aluminum alloys) contains typically well-defined zones, each characterized by fairly…

218

Abstract

Purpose

The weld region obtained during friction stir welding (FSW) of metallic materials (including aluminum alloys) contains typically well-defined zones, each characterized by fairly unique microstructure and properties. The purpose of this paper is to carry out combined experimental and numerical investigations of the mechanical properties of materials residing in different weld zones of FSW joints of thick AA2139-T8 plates.

Design/methodology/approach

Within the experimental investigation, the following has been conducted: first, optical-microscopy characterization of the transverse sections of the FSW joints, in order to help identify and delineate weld zones; second, micro hardness field generation over the same transverse section in order to reconfirm the location and the extent of various weld zones; third, extraction of miniature tensile specimens from different weld zones and their experimental testing; and finally, extraction of a larger size tensile specimen spanning transversely the FSW weld and its testing. Within the computational investigation, an effort was made to: first, validate the mechanical properties obtained using the miniature tensile specimens; and second, demonstrate the need for the use of the miniature tensile specimens.

Findings

It is argued that the availability of weld-zone material mechanical properties is critical since: first, these properties are often inferior relative to their base-metal counterparts; second, the width of the weld in thick metallic-armor is often comparable to the armor thickness, and therefore may represent a significant portion of the armor exposed-surface area; and finally, modeling of the weld-material structural response under loading requires the availability of high-fidelity/validated material constitutive models, and the development of such models requires knowledge of the weld-material mechanical properties.

Originality/value

The importance of determining the mechanical properties of the material in different parts of the weld zone with sufficient accuracy is demonstrated.

Details

International Journal of Structural Integrity, vol. 7 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 March 1998

Robert W. Gray, Donald G. Baird and Jan Helge Bøhn

Focusses on preliminary studies on developing thermoplastic composite materials suitable for use in fused deposition modeling (FDM). Looks at thermotropic liquid crystalline…

2598

Abstract

Focusses on preliminary studies on developing thermoplastic composite materials suitable for use in fused deposition modeling (FDM). Looks at thermotropic liquid crystalline polymers (TLCPs). Specifically aims to determine the feasibility of post‐processing TLCP composite strands generated by means of the dual extrusion process using FDM to enhance the tensile properties and functionality of prototypes. Describes the experiments and gives in‐depth results which include the finding that final mechanical properties of a composite prototype can be tailored to a specific application by adjusting the laydown pattern to increase the functionality of the prototype, and that these properties can be predicted by composite theory.

Details

Rapid Prototyping Journal, vol. 4 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 August 2021

Sunthorn Chaitat, Nattapon Chantarapanich and Sujin Wanchat

This paper aims to investigate effect of infill density, fabricated built orientation and dose of gamma radiation to mechanical tensile and compressive properties of polylactic…

Abstract

Purpose

This paper aims to investigate effect of infill density, fabricated built orientation and dose of gamma radiation to mechanical tensile and compressive properties of polylactic acid (PLA) part fabricated by fused deposit modelling (FDM) technique for medical applications.

Design/methodology/approach

PLA specimens for tensile and compressive tests were fabricated using FDM machine. The specimens geometry and test method were referred to ASTM D638 and ASTM D695, respectively. Three orientations under consideration were flat, edge and upright, whereas the infill density ranged from 0 to 100%. The gamma radiation dose used to expose to specimens was 25 kGy. The collected data included stress and strain, which was used to find mechanical properties, i.e. yield strength, ultimate tensile strength (UTS), fracture strength, elongation at yield, elongation at UTS and elongation at break. The t-test was used to access the difference in mechanical properties.

Findings

Compressive mechanical properties is greater than tensile mechanical properties. Increasing number of layer parallel to loading direction and infill density, it enhances the material property. Upright presents the lowest mechanical property in tensile test, but greatest in compressive test. Upright orientation should not be used for part subjecting to tensile load. FDM is more proper for part subjecting to compressive load. FDM part requires undergoing gamma ray for sterilisation, the infill density no less than 70 and 60% should be selected for part subjecting to tensile and compressive load, respectively.

Originality/value

This study investigated all mechanical properties in both tension and compression as well as exposure to gamma radiation. The results can be applied in selection of FDM parameters for medical device manufacturing.

Details

Rapid Prototyping Journal, vol. 28 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 March 2016

Jonathan Torres, Matthew Cole, Allen Owji, Zachary DeMastry and Ali P. Gordon

This paper aims to present the influences of several production variables on the mechanical properties of specimens manufactured using fused deposition modeling (FDM) with…

2231

Abstract

Purpose

This paper aims to present the influences of several production variables on the mechanical properties of specimens manufactured using fused deposition modeling (FDM) with polylactic acid (PLA) as a media and relate the practical and experimental implications of these as related to stiffness, strength, ductility and generalized loading.

Design/methodology/approach

A two-factor-level Taguchi test matrix was defined to allow streamlined mechanical testing of several different fabrication settings using a reduced array of experiments. Specimens were manufactured and tested according to ASTM E8/D638 and E399/D5045 standards for tensile and fracture testing. After initial analysis of mechanical properties derived from mechanical tests, analysis of variance was used to infer optimized production variables for general use and for application/load-specific instances.

Findings

Production variables are determined to yield optimized mechanical properties under tensile and fracture-type loading as related to orientation of loading and fabrication.

Practical implications

The relation of production variables and their interactions and the manner in which they influence mechanical properties provide insight to the feasibility of using FDM for rapid manufacturing of components for experimental, commercial or consumer-level use.

Originality/value

This paper is the first report of research on the characterization of the mechanical properties of PLA coupons manufactured using FDM by the Taguchi method. The investigation is relevant both in commercial and consumer-level aspects, given both the currently increasing utilization of 3D printers for component production and the viability of PLA as a renewable, biocompatible material for use in structural applications.

Details

Rapid Prototyping Journal, vol. 22 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 20 March 2017

Mohamad Mahmoudi, Alaa Elwany, Aref Yadollahi, Scott M. Thompson, Linkan Bian and Nima Shamsaei

The purpose of this paper is to understand the effect of four different factors: building orientation, heat treatment (solution annealing and aging), thermal history and process…

2597

Abstract

Purpose

The purpose of this paper is to understand the effect of four different factors: building orientation, heat treatment (solution annealing and aging), thermal history and process parameters on the mechanical properties and microstructural features of 17-4 precipitation hardening (PH) stainless steel (SS) parts produced using selective laser melting (SLM).

Design/methodology/approach

Various sets of test samples were built on a ProX 100™ SLM system under argon environment. Characterization studies were conducted using mechanical tensile and compression test, microhardness test, optical microscopy, X-ray diffraction and scanning electron microscopy.

Findings

Results indicate that building orientation has a direct effect on the mechanical properties of SLM parts, as vertically built samples exhibit lower yield and tensile strengths and elongation to failure. Post-SLM heat treatment proved to have positive effects on part strength and hardness, but it resulted in reduced ductility. Longer inter-layer time intervals between the melting of successive layers allow for higher austenite content because of lower cooling rates, thus decreasing material hardness. On the other hand, tensile properties such as elongation to failure, yield strength and tensile strength were not significantly affected by the change in inter-layer time intervals. Similar to other AM processes, SLM process parameters were shown to be instrumental in achieving desirable part properties. It is shown that without careful setting of process parameters, parts with defects (porosity and unmelted powder particles) can be produced.

Originality/value

Although the manufacturing of 17-4 PH SS using SLM has been investigated in the literature, the paper provides the first comprehensive study on the effect of different factors on mechanical properties and microstructure of SLM 17-4 PH. Optimizing process parameters and using heat treatment are shown to improve the properties of the part.

Details

Rapid Prototyping Journal, vol. 23 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 5000