Search results

1 – 10 of 426
Article
Publication date: 10 June 2022

Hooman Imani, Kamaladin Gharanjig and Zahra Ahmadi

The purpose of this study is simultaneous dyeing and mordanting of wool yarns with extracted cochineal dye and aluminum sulfate to the reduction of consuming energy, water and…

Abstract

Purpose

The purpose of this study is simultaneous dyeing and mordanting of wool yarns with extracted cochineal dye and aluminum sulfate to the reduction of consuming energy, water and time.

Design/methodology/approach

The dyeing process was optimized using the response surface methodology (RSM) approach. pH, dyeing duration and the presence of additives were chosen as variables and the color strength of samples as a response. The color characteristics and fastness attributes of samples dyed in the best condition were evaluated and compared to pre-mordant dyeing outcomes on wool yarns.

Findings

The best conditions for deep dyeing wool with cochineal dye were as follows: pH 2.5, time 110 min and the ratio of aluminum: additives 1:0 at 100 °C. Color strength of dyed wool yarns by one-bath and pre-mordant dyeing methods were approximately the same. Wool yarns can dye to the on-bath dyeing method such that the dyed samples have similar color strength and fastness properties to pre-mordant dyeing.

Social implications

Wool dyeing processes that use one-bath dyeing consume less water and produce fewer effluents. As a result, this strategy conserves water and energy for a higher quality of life. The findings of this study, in general, aid environmental protection.

Originality/value

A novel one-bath process for dyeing wool with cochineal dye at heavy depths is introduced. RSM was used to optimize the procedure and determine effective parameters on the color strength of dyed wools. Using extracted cochineal dye and aluminum sulfate in a simultaneous dyeing technique, good color fastness qualities on wool fibers were achieved.

Details

Pigment & Resin Technology, vol. 52 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 December 2017

Xue Zhao

This paper aims to study microwave pad dyeing process for wool fabric. Influences of various dyeing process conditions including galactomannan dosage, urea dosage, sodium…

Abstract

Purpose

This paper aims to study microwave pad dyeing process for wool fabric. Influences of various dyeing process conditions including galactomannan dosage, urea dosage, sodium bisulphite dosage, pH value, microwave irradiation power, treating time and cold batching time before microwave fixation on K/S values were analysed. The colour yield, fixation and levelness were compared between microwave fixation and cold batching fixation.

Design/methodology/approach

Colour yield (K/S values) was calculated using a Datacolor SF650 colour measuring and matching instrument (10° standard observer, CIE D65 light source Measuring; Datacolor, USA) and was used to determine the depth of the shade of dyed wool fabrics. Levelness of dyeing was evaluated also using the Datacolor SF650 colour measuring and matching instrument by measuring average deviation (S), range (P) of the maximum and the minimum for lightness (L), chroma (C) and hue (h), and balanced colour difference (ΔE) at 20 specified uniform locations on the wool fabrics. The colour difference was calculated as per the equation ΔE=(ΔL2+Δa2+Δb2)1/2 as appearing in the Experimental section. Fixation was determined using a Datacolor SF650 colour measuring and matching instrument by measuring ratio the of K/S for wool fabrics that were rinsed, washed, neutralised and then dried, and wool fabrics that were dried after fixation without washing. The pH of the padding solution was evaluated using a PHSJ-4A PH meter (Datacolor, USA). SEM analysis was done on JEOL JSM-5600LV machine (JEOL Ltd, Japan).

Findings

This study is based on application of microwave technology in the processing of silk.

Originality/value

It was found in laboratory experiments that uniform dyeing and deeper colour can be achieved throughout the microwave pad dyeing process for wool by using galactomannan. The novel process could reduce the dyeing time and the energy consumption of the traditional cold pad-batch dyeing process for wool fabric.

Details

Research Journal of Textile and Apparel, vol. 21 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 12 March 2018

Debojyoti Ganguly, Chanchal Mondal and Asim Kumar Roy Choudhury

The purpose of this study is to optimize single-bath dyeing process of wool and silk blend, to achieve uniform colour strength for both the fibre after the dyeing process. Due to…

Abstract

Purpose

The purpose of this study is to optimize single-bath dyeing process of wool and silk blend, to achieve uniform colour strength for both the fibre after the dyeing process. Due to different absorption characteristics of wool and silk, two-stage dyeing is preferred in the industry. If the fibres are dyed together, the wool fibre becomes darker and the silk fibre becomes lighter after the dyeing process. Solid dyeing effect can be achieved using a single-bath dyeing process.

Design/methodology/approach

The dye-acceptor sites in the wool fibre are first blocked using one commercial syntan Mesitol HWS. Then, the syntan-treated wool and silk fibres (80:20 blend ratios) are dyed with Telon Navy AMF dyes in the presence of sodium sulphate. To explore the influence of Syntan, sodium sulphate and the experimental conditions on the dyeing process and to optimize the process, central composite design (CCD) of four factors and three levels was tested.

Findings

The design process is optimized using four independent variables: Mesitol HWS concentration, sodium sulphate concentration, pH of dyebath and temperature of dyeing. Three levels of Mesitol HWS concentration (5, 10 and 15 per cent), sodium sulphate concentration (10, 20 and 30 per cent), pH (2.5, 4 and 5.5) and temperature of dyeing (70, 80 and 900°C) were selected for this study. These variables are optimized using response surface regression equation of the ratio of K/S wool and K/S silk. The predicted equation matched well with the experimental data.

Originality/value

This paper proposes the use of one-bath dyeing process of wool and silk blend fabric to reduce the dyeing time, process step and to save water.

Details

Research Journal of Textile and Apparel, vol. 22 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 February 2008

Xiuliang Hou, Li Wei, Xinlong Zhang, Huihui Wu, Qicheng Zhou and Shan-yuan Wang

Catechu liquor, which is deep brown-red in color, was purified with a micro-filtration membrane and the stability of catechu dye to different levels of temperatures and pH were…

Abstract

Catechu liquor, which is deep brown-red in color, was purified with a micro-filtration membrane and the stability of catechu dye to different levels of temperatures and pH were investigated in this paper. The effects of the dyeing conditions on color characteristic values and color fastnesses of the dyed wool fabrics were also investigated. The results show that the liquor of catechu dye is stable at pH values of 3-7 and its color changes to a deeper brown-red when its pH value is above 8. The preferable dyeing conditions for wool fabric with refined powder catechu dye are as follows: dyeing temperature of 100±C, pH value of 6.5 for the dye bath and catechu dye of 1-4% (o.w.f).

The dyed wool fabric has good color fastnesses to washing, alkali perspiration and dry rubbing. However, its color fastness rating to wet rubbing is poor, ranging from 2-3. Further research will be needed on this aspect.

Details

Research Journal of Textile and Apparel, vol. 12 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 27 January 2020

Hossein Barani and Homa Maleki

Finding blue colorants from natural sources is extremely difficult and, usually, the anthocyanin compounds are used for producing the blue color. This study aims to apply the Red…

Abstract

Purpose

Finding blue colorants from natural sources is extremely difficult and, usually, the anthocyanin compounds are used for producing the blue color. This study aims to apply the Red Cabbage as a natural colorant to obtain different colors on wool yarn, as well as specify the optimum dyeing condition by response surface methodology for obtaining a blue color.

Design/methodology/approach

The effect of dyeing process parameters such as mordant concentration, dyeing time, pH of dyeing bath and dyeing temperature examined in the color characteristics of the dyed wool samples.

Findings

The obtained results indicated that the diverse colors achieve by varying the dyeing process parameters, which is in the range of 26° up to 271°. The non-mordanted dyed wool samples showed a red and red brownish color (Hue angle = 26° up to 70°), and the mordanted dyed wool samples showed a blue and blue-greenish color (Hue angle = 230° up to 271°). The obtained blue color with the optimized dyeing condition presented a considerable good wash and lightfastness.

Originality/value

This study provides a promising application of Red Cabbage as a natural colorant for obtaining different colors by varying the dyeing process parameters such as pH and stannous ion concentrations. The stannous ions yielded a co-pigmentation and presented a blue color on wool fibers, which is extremely difficult to obtain with natural colorant.

Details

Pigment & Resin Technology, vol. 49 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 September 2017

Debojyoti Ganguly, Chanchal Mondal and Asim Kumar Roy Choudhury

In recent times, wool- and silk-blended fabrics are popular for creating glamourous products. Silk is blended to wool for creating more lustrous effect and to impart strength; on…

Abstract

Purpose

In recent times, wool- and silk-blended fabrics are popular for creating glamourous products. Silk is blended to wool for creating more lustrous effect and to impart strength; on the other hand, wool is responsible for resilience, softness and warmth properties. Chemically both the fibres are protein-based, but the amount of amino acids is different. Due to this, the dye absorption behaviours of the two fibres from the same dye-bath are different. Wool is become darker than the silk fibre, if both the fibres are dyed together in a single bath dyeing process.

Design/methodology/approach

Here the wool fibres are first pre-treated with a commercial synthetic tanning agent (syntan) Mesitol HWS at three different pH values of 2.2, 3.2 and 4.2 and at three different concentrations: 5, 10 and 15 per cent. Then the syntan pre-treated wool fibres are dyed together with silk fibres maintaining the blend ratio as 80:20 by Telon Red MR, Telon Yellow M4GL and Telon Blue MRLW with sodium sulphate at three different concentrations of 10, 20 and 30 per cent.

Findings

The dye absorbency of the syntan-treated wool fibres decreased with increase in syntan concentration, whereas the colour strength of silk fibres increased. The resist effectiveness of wool fibres is increased from 6 to 59 per cent with increase of syntan concentration. So after the dyeing process, the colour strength of syntan-treated wool fibres are almost same with the colour strength of silk fibres. The washing fastness of the samples is improved, and wash fastness behaviour of both wool and silk fibres is almost same.

Originality/value

This paper gives an idea about the one bath dyeing process of wool- and silk-blended fabrics to achieve solid dyeing effect.

Details

Research Journal of Textile and Apparel, vol. 21 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 3 July 2009

Padma S. Vankar, Rakhi Shanker and Samudrika Wijayapala

The purpose of this paper is to evaluate the efficiency of dyeing on cotton wool and silk fabrics with natural dye obtained from kitchen waste of dry skin extract of Allium cepa.

1612

Abstract

Purpose

The purpose of this paper is to evaluate the efficiency of dyeing on cotton wool and silk fabrics with natural dye obtained from kitchen waste of dry skin extract of Allium cepa.

Design/methodology/approach

The dry skin of onion produces natural dye which has been used for dyeing textiles. In the present study, innovative dyeing with onion has been shown to give good dyeing results. Pretreatment with 2 per cent metal mordant and using 5 per cent of plant extract (owf) was found to be optimum and showed very good fastness properties for cotton, wool and silk dyed fabrics. For effective natural dyeing with dry skin extract of Allium cepa, conventional method of dyeing was carried out using metal mordants. The purpose of using this source was with an idea to produce value addition dyed product from kitchen waste as the dye has very good potential of uptake, adherence to the fabric and has good wash and light fastnesses. Results show very attractive hue colours.

Findings

The preference of using easily and cheaply available material for dyeing by conventional dyeing lowers the cost of natural dyeing and enhances resource productivity and as a result, reduces waste. This makes onion scale one of the easily available materials for natural dyeing industry.

Research limitations/implications

Although metal mordanting with copper sulphate and potassium dichromate are not ecofriendly but we have used only 2 per cent of these metal salts to prepare different shades with dry scales of Allium cepa extract.

Practical implications

The method developed for natural dyeing of cotton, silk and wool fabrics using skin extract of allium in conjunction with metal mordanting has shown very deep coloration. The stepwise dyeing of cotton fabric with metal mordant by the natural dye Allium cepa showed that the stepwise dyeing process gave very good result. The dye uptake in case of stepwise dyeing was from 65‐68 per cent in the case of cotton, 70‐74 per cent in silk and 78‐82 per cent in wool with different mordants.

Originality/value

The method developed for natural dyeing of cotton, silk and wool fabrics using skin extract of allium in conjunction with metal mordanting has shown marked improvement in terms of dye adherence and fastness properties and can thus be recommended for industrial application.

Details

Pigment & Resin Technology, vol. 38 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 February 2024

Shimaa S.M. Elhadad, Hany Kafafy, Hamada Mashaly and Ahmed Ali El-Sayed

The purpose of this study is to use liposome technology in the treatment of fabrics textiles because of its efficient energy saving, reducing time and temperature.

Abstract

Purpose

The purpose of this study is to use liposome technology in the treatment of fabrics textiles because of its efficient energy saving, reducing time and temperature.

Design/methodology/approach

The newly prepared lecithin liposome was used to encapsulate dyes for the purpose of increasing dyeing affinity. Different ratios of commercially available lecithin liposomes (1%, 3%, 5% and 7%) were used simultaneously in the dyeing of cotton and wool fabrics. The treated fabrics (cotton and wool fabrics) were confirmed using different analytical procedures such as scanning electron microscope (SEM), Fourier-transition infrared spectroscopy, ultraviolet protection factor, colour strength (K|S) measurements and fastness measurements.

Findings

The results show that increasing liposome ratios in dyeing baths leads to increased dyeing affinity for cotton and wool fabrics compared with conventional dyeing without using liposomes. In addition to that, the colour strength values, infrared spectra, SEM and fastness properties of non-liposome-dyed fabrics and liposome-dyed fabrics were investigated.

Originality/value

The research paper provides broad spectrum of green encapsulation fabrics using liposome technology to perform the dye stability, dye strength and fastness.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3548

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 January 2016

E. Dehnavi, A. Shams-Nateri and H. Khalili

This paper aims to focus on the absorption behaviour of single and binary mixtures of natural dyes on wool. Natural dyes are multi-components with different structures and…

Abstract

Purpose

This paper aims to focus on the absorption behaviour of single and binary mixtures of natural dyes on wool. Natural dyes are multi-components with different structures and properties.

Design/methodology/approach

In this research, the absorption behaviour of single and binary mixtures of natural dyes was investigated on wool fibre. Study was conducted via some natural dyes, including pomegranate peel as a yellow natural dye with tannin, weld as a yellow natural dye without tannin and madder as a red natural dye without tannin. Applied mordant was alum, which was used in the pre-mordant method. Different shades were obtained by varying dye concentration in the binary mixture. The effect of tannin on absorption behaviour of binary mixture of natural dyes was investigated by spectral reflectance and colour parameters of dyed samples measurements.

Findings

Obtained results indicate that tannin affects the absorption behaviour of natural dyes in binary mixtures.

Practical implications

Because natural dyes are multi-components with different structure and properties, the study of compatibility and absorption behaviour of natural dyes in binary mixture on wool is important in applied researches.

Originality/value

The study of compatibility and absorption behaviour of binary mixture of natural dyes on wool is novel.

Details

Pigment & Resin Technology, vol. 45 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 426