Search results

1 – 10 of over 1000
Article
Publication date: 13 January 2021

Ahmed Attia, Salim Guettala and Rebih Zaitri

The purpose of this paper is to implement the mathematical models to predict concretes physico-mechanical characteristics made with binary and ternary sands using a mixture design…

Abstract

Purpose

The purpose of this paper is to implement the mathematical models to predict concretes physico-mechanical characteristics made with binary and ternary sands using a mixture design method. It is a new technique that optimizes mixtures without being obliged to do a lot of experiments. The goal is to find the law governing the responses depending on mixture composition and capable of taking into account the effect of each parameter separately and in interaction between several parameters on the characteristics studied.

Design/methodology/approach

Mixture design method was used for optimizing concretes characteristics and studying the effects of river sand (RS), dune sand (DS) and crushed sand (CS) in combinations of binary system and ternary on workability, the compressive and flexural strengths of concretes at 7 and 28 days. A total of 21 mixtures of concrete were prepared for this investigation. The modeling was carried out by using JMP7 statistical software.

Findings

Mixture design method made it possible to obtain, with good precision, the statistical models and the prediction curves of studied responses. The models have relatively good correlation coefficients (R2 = 0.70) for all studied responses. The use of binary and ternary mixtures sands improves the workability and their mechanical strengths. The obtained results proved that concrete, based on binary mixture C15, presents the maximum compressive strength (MCS) on 28 day with an improvement of around 20%, compared to reference concrete (C21). For ternary mixtures, MCS on 28 day was obtained for the mixture C10 with an improvement of around 15% compared to C21. Increase in compressive strength during the progress of hydration reactions was accompanied by an increase in the flexural strength, but in different proportions.

Originality/value

The partial incorporation of DS (= 40%) in the concrete formulation can provide a solution for some work in the southern regions of country. In addition, the CS is an interesting alternative source for replacing 60% of RS. The concrete formulation based on local materials is really capable of solving the economic and technical problems encountered in the building field, as well as environmental problems. Local resources therefore constitute an economic, technological and environmental alternative.

Details

World Journal of Engineering, vol. 18 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 September 2021

Mohammed El Khomri, Noureddine El Messaoudi, Abdellah Dbik, Safae Bentahar, Abdellah Lacherai, Zahra Goodarzvand Chegini and Amal Bouich

Argan nutshell wood (ANW) has been used in this study as an agricultural solid waste to remove Congo red (CR) from an aqueous solution in single and mixture binary in the presence…

Abstract

Purpose

Argan nutshell wood (ANW) has been used in this study as an agricultural solid waste to remove Congo red (CR) from an aqueous solution in single and mixture binary in the presence of methylene blue (MB) or crystal violet (CV).

Design/methodology/approach

The ANW was characterized by Fourier transform infrared and scanning electron microscope analysis. The effect of ANW dose (8–40 gL−1), contact time (0–180 min), pH of the solution (4–11) and CR dye concentration (100–500 mgL−1) on CR adsorption was studied in batch mode and evaluated by kinetic and isotherm models in a single system. In the binary system, the CR removal was studied from a CR + MB and CR + CV mixture with different percentages of dyes, ranging from 0% to 100%.

Findings

The pseudo-second-order and the Langmuir models could best describe the CR sorption onto ANW in a single system. In addition, in the case of the binary system, there is the appearance of a synergistic phenomenon between the CR and the other cationic dyes and the CR adsorption capacity increased until 12.24 mg g-1 and 12.06 mg g-1 in the presence of the MB and CV in the mixture, respectively.

Practical implications

This study demonstrated that ANW prepared can be suggested as an excellent potential adsorbent to remove dyes from wastewaters from single and mixture systems.

Originality/value

This study is original.

Details

Pigment & Resin Technology, vol. 51 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 April 2022

Hadji Ben Salah, Benamara Dalila and Taallah Bachir

This paper aims to express a mathematical model that predicts the effect of mineral additives on the physical–mechanical properties of high-performance sand concrete (HPSC), using…

53

Abstract

Purpose

This paper aims to express a mathematical model that predicts the effect of mineral additives on the physical–mechanical properties of high-performance sand concrete (HPSC), using SAS's JMP7 statistical analysis software.

Design/methodology/approach

A mixture design modeling approach is applied to sand concrete (SC) for optimizing mixtures without being obliged to do a lot of experiments, where the cement is partially replaced with two mineral additives silica fume (SF) and blast furnace slag (BFS) in proportions as high as 20% of the mass. A total of 15 mixtures of sand concrete is prepared in the laboratory using this analytical technique in combinations with binary and ternary systems to estimate the workability and the compressive strength (CS) of sand concrete at 7 and 28 days.

Findings

The results obtained showed that the use of derived models based on the experimental design approach greatly assisted in understanding the interactions between the various parameters of the studied mixtures; the mathematical models present excellent correlation coefficients (R² = 0.96 for CS7 days, R² = 0.93 for CS28 days and R² = 0.95 for slump) for all studied responses. Moreover, it was also found that the inclusion of additives (SF and BFS) in binary mixture SC12 and ternary mixtures SC8 leads to a significant improvement in mechanical strength compared to reference sand concrete SC15. These results give the possibility to obtain a formulation of HPSC.

Originality/value

This paper shows the possibility of manufacturing high-performance sand-concrete with good compressive strength; the developed mathematical model by using SAS's JMP7 statistical analysis software allowed us to reach a strength compression value of about 60 MPa, in 28 days, by replacing 10% of the cement weight with silica fume. Furthermore, with partial replacement of the cement weight (15%) with two additions such as silica fume (10%) and blast furnace slag (5%), a 58 MPa of compressive strength can be achieved, without overlooking the fact that this can be a key economic and environmental alternative.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 March 2011

M. Er‐Raki, M. Hasnaoui, A. Amahmid and M. Bourich

The purpose of this paper is to study analytically and numerically the Soret effect on double diffusive natural convection induced in a horizontal Darcy porous layer subject to…

Abstract

Purpose

The purpose of this paper is to study analytically and numerically the Soret effect on double diffusive natural convection induced in a horizontal Darcy porous layer subject to lateral heat and mass fluxes. The work focuses on the particular situation where the solutal to thermal buoyancy forces ratio, N, is related to the Soret parameter, SP, by the relation. For this particular situation, the rest state is a solution of the problem. The analytical identification of the parallel flow bifurcations counts among the objectives of the study. The effect of the governing parameters on the fluid flow properties and heat and mass transfer characteristics is also examined.

Design/methodology/approach

Both the Darcy model and the Boussinesq approximation are used for the mathematical formulation of the problem. The geometry under study is a horizontal porous cavity filled with a binary fluid. The problem is solved analytically on the basis of the parallel flow approximation, valid in the case of a shallow cavity. The analytical results are validated numerically using a second‐order finite difference method.

Findings

The main finding is the absence of a supercritical bifurcation for this problem. More precisely, in the studied case, only the subcritical convection was found possible for the parallel flow structure and its threshold was determined analytically versus the governing parameters. It is also shown that the SP‐Le plane can be divided into two parallel flow regions; in one region the flow is counterclockwise while it is clockwise in the other. At sufficiently large values of RT, two solutions of ψ0, termed as “stable” and “unstable” and varying, respectively, as RT1/3 and RT−1 were obtained. The flows corresponding to these solutions are rotating in the same direction with different intensities. An analytical expression is established for the critical Rayleigh number which allows a control of the onset of motion in the system.

Practical implications

The thermodiffusion phenomenon in saturated porous geometries is of practical interest in several natural and technological processes such as the migration of moisture through air contained in fibrous insulations, food processing, contaminant transport in ground water, electrochemical processes, etc.

Originality/value

The study concerns the Soret effect within a system subject to outside mass flux. Only one type of bifurcation (subcritical bifurcation) was found possible for the parallel flow structure in the present configuration instead of two kinds of bifurcations (supercritical and subcritical).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2016

E. Dehnavi, A. Shams-Nateri and H. Khalili

This paper aims to focus on the absorption behaviour of single and binary mixtures of natural dyes on wool. Natural dyes are multi-components with different structures and…

Abstract

Purpose

This paper aims to focus on the absorption behaviour of single and binary mixtures of natural dyes on wool. Natural dyes are multi-components with different structures and properties.

Design/methodology/approach

In this research, the absorption behaviour of single and binary mixtures of natural dyes was investigated on wool fibre. Study was conducted via some natural dyes, including pomegranate peel as a yellow natural dye with tannin, weld as a yellow natural dye without tannin and madder as a red natural dye without tannin. Applied mordant was alum, which was used in the pre-mordant method. Different shades were obtained by varying dye concentration in the binary mixture. The effect of tannin on absorption behaviour of binary mixture of natural dyes was investigated by spectral reflectance and colour parameters of dyed samples measurements.

Findings

Obtained results indicate that tannin affects the absorption behaviour of natural dyes in binary mixtures.

Practical implications

Because natural dyes are multi-components with different structure and properties, the study of compatibility and absorption behaviour of natural dyes in binary mixture on wool is important in applied researches.

Originality/value

The study of compatibility and absorption behaviour of binary mixture of natural dyes on wool is novel.

Details

Pigment & Resin Technology, vol. 45 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 September 2019

Kamila Piotrowska, Feng Li and Rajan Ambat

The purpose of this paper is to investigate the decomposition behavior of binary mixtures of organic activators commonly used in the no-clean wave flux systems upon their exposure…

Abstract

Purpose

The purpose of this paper is to investigate the decomposition behavior of binary mixtures of organic activators commonly used in the no-clean wave flux systems upon their exposure to thermal treatments simulating wave soldering temperatures. The binary blends of activators were studied at varying ratios between the components.

Design/methodology/approach

Differential scanning calorimetry and thermogravimetric analysis were used to study the characteristics of weak organic acid (WOA) mixtures degradation as a function of temperature. The amount of residue left on the surface after the heat treatments was estimated by gravimetric measurements as a function of binary mixture type, temperature and exposure time. Ion chromatography analysis was used for understanding the relative difference between decomposition of activators in binary blends. The aggressivity of the left residue was assessed using the acidity indication gel test, and effect on reliability was investigated by DC leakage current measurement performed under varying humidity and potential bias conditions.

Findings

The results show that the typical range of temperatures experienced by electronics during the wave soldering process is not sufficient for the removal of significant activator amounts. If the residues contain binary mixture of WOAs, the final ratio between the components, the residue level and the corrosive effects depend on the relative decomposition behavior of individual components. Among the WOA investigated under the conventional wave soldering temperature, the evaporation and removal of succinic acid is more dominant compared to adipic and glutaric acids.

Practical implications

The findings are attributed to the chemistry of WOAs typically used as flux activators for wave soldering purposes. The results show the importance of controlling the WOA content and ratio between activating components in a flux formulation in relation to its tendencies for evaporation during soldering and the impact of its residues on electronics reliability.

Originality/value

The results show that the significant levels of flux residues can only be removed at significantly higher temperatures and longer exposure times compared to the conventional temperature range used for the wave soldering process. The potential corrosion issues related to insufficient flux residues removal will be determined by the residue amount, its composition and ratio between organic components. The proper time of thermal treatment and careful choice of fluxing formulation could ensure more climatically reliable product.

Details

Soldering & Surface Mount Technology, vol. 32 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 January 2009

A.S. Nateri and E. Ekrami

Application of ratio spectra derivative spectrophotometery to quantitative analyses of bicomponent dye mixtures.

1631

Abstract

Purpose

Application of ratio spectra derivative spectrophotometery to quantitative analyses of bicomponent dye mixtures.

Design/methodology/approach

The binary mixtures of five textile dyes including yellow, scarlet, red, blue, and navy blue colors were analysed by ratio spectra derivative spectrophotometry. The absorption spectra of the binary mixtures, prepared in different ratios, were recorded between 400 and 700 nm. The obtained spectra were divided by a standard spectrum of each component of the binary mixtures, and then the derivative spectra were calculated. The amounts of dyes were determined by the measurements in the appropriate wavelengths in the range of 400‐700 nm.

Findings

The analysis of obtained results via the proposed derivative and normal methods show higher accuracy of the developed method in determination of dye contents. The proposed derivative technique was found to be easily applicable for the quantitative analysis of dyes with both overlapping and non‐overlapping spectra in their binary mixtures.

Practical implications

The developed method can be a simple and practical solution to the quantitative analysis of bicomponent dye solutions with overlapping spectra.

Originality/value

Ratio spectra derivative spectrophotometery is introduced as a new approach for achieving the higher accuracy of determination of dye concentration in bicomponent dye solutions. The developed strategy could be applied in color industries where fine resolution of bicomponent dye mixtures is needed.

Details

Pigment & Resin Technology, vol. 38 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 June 2011

Adriano Tiribocchi, Antonio Piscitelli, Giuseppe Gonnella and Antonio Lamura

The purpose of this paper is to present numerical results about phase separation of binary fluid mixtures quenched by contact with cold walls.

Abstract

Purpose

The purpose of this paper is to present numerical results about phase separation of binary fluid mixtures quenched by contact with cold walls.

Design/methodology/approach

The thermal phase separation is simulated by using a hybrid lattice Boltzmann method that solves the continuity and the Navier‐Stokes equations. The equations for energy and concentration are solved by using a finite‐difference scheme. This approach provides a complete description of the thermo‐hydrodynamic effects in the mixture.

Findings

A rich variety of domain patterns are found depending on the viscosity and on the heat conductivity of the mixture. Ordered lamellar structures are observed at high viscosity while domains rounded in shape dominate the phase separation at low viscosity, where two scales characterize the growth of domains.

Research limitations/implications

The present approach provides a numerical method that can be extended to other systems such as liquid‐vapor or lamellar systems. Moreover, a three‐dimensional study can give a complete picture of thermo‐hydrodynamic effects.

Originality/value

This paper provides a consistent thermodynamic theoretical framework for a binary fluid mixture and a numerically stable method to simulate them.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 21 December 2022

Chaduvula Vijaya Lakshmi, Ch. Ravi Kiran, M. Gowrisankar, Shaik Babu and D. Ramachandran

The paper aims to throw light on the interactions taking place between the different chemical compositions at various temperatures. P-methylacetophenone is a polar dissolvable…

Abstract

Purpose

The paper aims to throw light on the interactions taking place between the different chemical compositions at various temperatures. P-methylacetophenone is a polar dissolvable, which is positively related by dipole–dipole co-operations and is exceptionally compelling a direct result of the shortfall of any critical primary impacts because of the absence of hydrogen bonds; hence, it might work an enormous dipole moment (μ = 3.62 D). Alcohols additionally assume a significant part in industries and research facilities as reagents and pull in incredible consideration as helpful solvents in the green innovation. They are utilized as pressure-driven liquids in drugs, beauty care products, aromas, paints removers, flavors, dye stuffs and as a germ-free specialist.

Design/methodology/approach

Mixtures were prepared by mass in airtight ground stopper bottles. The mass measurements were performed on a digital electronic balance (Mettler Toledo AB135, Switzerland) with an uncertainty of ±0.0001 g. The uncertainty in mole fraction was thus estimated to be less than ±0.0001. The densities of pure liquids and their mixtures were determined using a density meter (DDH-2911, Rudolph Research Analytical). The instrument was calibrated frequently using deionized doubly distilled water and dry air. The estimated uncertainty associated with density measurements is ±0.0003 g.cm−3. Viscosities of the pure liquids and their mixtures were determined by using Ostwald’s viscometer. The viscometer was calibrated at each required temperature using doubly distilled water. The viscometer was cleaned, dried and is filled with the sample liquid in a bulb having capacity of 10 ml. The viscometer was then kept in a transparent walled water bath with a thermal stability of ±0.01K for about 20 min to obtain thermal equilibrium. An electronic digital stop watch with an uncertainty of ±0.01 s was used for the flow time measurements for each sample at least four readings were taken and then the average of these was taken.

Findings

Negative values of excess molar volume, excess isentropic compressibility and positive values of deviation in viscosity including excess Gibbs energy of activation of viscous flow at different temperatures (303.15, 308.15 and 313.15 K) may be attribution to the specific intermolecular interactions through the hetero-association interaction between the components of the mixtures, resulting in the formation of associated complexes through hydrogen bond interactions.

Originality/value

The excess molar volume (VE) values were analyzed with the Prigogine–Flory–Patterson theory, which demonstrated that the free volume contribution is the one of the factors influencing negative values of excess molar quantities. The Jouyban–Acree model was used to correlate the experimental values of density, speed of sound and viscosity.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Article
Publication date: 11 April 2021

Tarek Hadji, Salim Guettala and Michèle Quéneudec

The purpose of this paper is to present the modeling of statistical variation of experimental data using the design of experiments method to optimize the formulation of a high…

Abstract

Purpose

The purpose of this paper is to present the modeling of statistical variation of experimental data using the design of experiments method to optimize the formulation of a high performance concrete (HPC) using materials that are locally available in Algeria. For this, two mineral additions (natural pozzolana and limestone filler [LF]) were used. Both additions are added by substitution of cement up to 25%. To better appreciate the effect of replacing a part of cement by natural pozzolana and LF and to optimize their combined effect on the characteristics of HPC, an effective analytical method is therefore needed to reach the required objective.

Design/methodology/approach

The experimental part of the study consisted of substituting a portion of cement by various proportions of these additions to assess their effects on the physico-mechanical characteristics of HPC. A mixture design with three factors and five levels was carried out. The JMP7 software was used to provide mathematical models for the statistical variation of measured values and to perform a statistical analysis. These models made it possible to show the contribution of the three factors and their interactions in the variation of the response.

Findings

The mixture design approach made it possible to visualize the influence of LF and pozzolanic filler (PF) on the physico-mechanical characteristics of HPC, the developed models present good correlation coefficients (R2 = 0.82) for all studied responses. The obtained results indicated that it is quite possible to substitute a part of cement with LF and PF in the formulation of a HPC. Thanks to the complementary effect between the two additions, the workability could be improved and the strengths drop could be avoided in the short, medium and long term. The optimization of mixture design factors based on the mathematical models was carried out to select the appropriate factors combinations; a good agreement between the experimental results and the predicted results was obtained.

Originality/value

The coefficient of PF in Cs28 model is closer to that of LF than in Cs7 model, thanks to the complementary effect between LF and PF at the age of 28 days. It was found that the optimal HPC14 concrete (10%LF–5%PF) provides the best compromise between the three responses. It is also worth noting that the use of these two local materials can reduce the manufacturing costs of HPC and reduce carbon dioxide emissions into the atmosphere. This can be an important economic and environmental alternative.

Details

World Journal of Engineering, vol. 18 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 1000