Search results

1 – 10 of over 6000
Article
Publication date: 12 June 2019

Maciej Sobolewski and Barbara Dziurdzia

The purpose of the paper is to experimentally evaluate the impact of voids on thermal conductivity of a macro solder joint formed between a copper cylinder and a copper plate by…

Abstract

Purpose

The purpose of the paper is to experimentally evaluate the impact of voids on thermal conductivity of a macro solder joint formed between a copper cylinder and a copper plate by using reflow soldering.

Design/methodology/approach

A model of a surface mount device (SMD) was developed in the shape of a cylinder. A copper plate works as a printed circuit board (PCB). The resistor was connected to a power supply and the plate was cooled by a heat sink and a powerful fan. A macro solder joint was formed between a copper cylinder and a copper plate using reflow soldering and a lead-free solder paste SAC305. The solder paste was printed on a plate through stencils of various apertures. It was expected that various apertures of stencils will moderate the various void contents in solder joints. K-type thermocouples mounted inside cylinders and at the bottom of a plate underneath the cylinders measured the temperature gradient on both sides of the solder joint. After finishing the temperature measurements, the cylinders were thinned by milling to thickness of about 2 mm and then X-ray images were taken to evaluate the void contents. Finally the tablets were cross-sectioned to enable scanning electron microscopy (SEM) observations.

Findings

There was no clear dependence between thermal conductivity of solder joints and void contents. The authors state that other factors such as intermetallic layers, microcracks, crystal grain morfologyof the interface between the solder and the substrate influence on thermal conductivity. To support this observation, further investigations using metallographic methods are required.

Originality/value

Results allow us to assume that the use of SAC305 alloy for soldering of components with high thermal loads is risky. The common method for thermal balance calculation is based on the sum of serial thermal resistances of mechanical compounds. For these calculations, solder joints are represented with bulk SAC305 thermal conductivity parameters. Thermal conductivity of solder joints for high density of thermal energy is much lower than expected. Solder joints’ structure is not fully comparable with bulk SAC305 alloy. In experiments, the average value of the solder joint conductivity was found to be 8.1 W/m·K, which is about 14 per cent of the nominal value of SAC305 thermal conductivity.

Details

Soldering & Surface Mount Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 27 February 2018

Barbara Dziurdzia, Maciej Sobolewski and Janusz Mikolajek

The aim of this paper is to evaluate using statistical methods how two soldering techniques – the convection reflow and vapour phase reflow with vacuum – influence reduction of…

Abstract

Purpose

The aim of this paper is to evaluate using statistical methods how two soldering techniques – the convection reflow and vapour phase reflow with vacuum – influence reduction of voids in lead-free solder joints under Light Emitted Diodes (LEDs) and Ball Grid Arrays (BGAs).

Design/methodology/approach

Distribution of voids in solder joints under thermal and electrical pads of LEDs and in solder balls of BGAs assembled with convection reflow and vapour phase reflow with vacuum has been investigated in terms of coverage or void contents, void diameters and number of voids. For each soldering technology, 80 LEDs and 32 solder balls in BGAs were examined. Soldering processes were carried out in the industrial or semi-industrial environment. The OM340 solder paste of Innolot type was used for LED soldering. Voidings in solder joints were inspected with a 2D X-ray transmission system. OriginLab was used for statistical analysis.

Findings

Investigations supported by statistical analysis showed that the vapour phase reflow with vacuum decreases significantly void contents and number and diameters of voids in solder joints under LED and BGA packages when compared to convection reflow.

Originality/value

Voiding distribution data were collected on the basis of 2D X-ray images for test samples manufactured during the mass production processes. Statistical analysis enabled to appraise soldering technologies used in these processes in respect of void formation.

Details

Soldering & Surface Mount Technology, vol. 30 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 12 May 2020

Barbara Dziurdzia, Maciej Sobolewski, Janusz Mikołajek and Sebastian Wroński

This paper aims to investigate voiding phenomena in solder joints under thermal pads of light-emitting diodes (LEDs) assembled in mass production environment by reflow soldering…

2492

Abstract

Purpose

This paper aims to investigate voiding phenomena in solder joints under thermal pads of light-emitting diodes (LEDs) assembled in mass production environment by reflow soldering by using seven low-voiding lead-free solder pastes.

Design/methodology/approach

The solder pastes investigated are of SAC305 type, Innolot type or they are especially formulated by the manufacturers on the base of (SnAgCu) alloys with addition of some alloying elements such as Bi, In, Sb and Ti to provide low-void contents. The SnPb solder paste – OM5100 – was used as a benchmark. The solder paste coverage of LED solder pads was chosen as a measure of void contents in solder joints because of common usage of this parameter in industry practice.

Findings

It was found that the highest coverage and, related to it, the least void contents are in solder joints formed with the pastes LMPA-Q and REL61, which are characterized by the coverage of mean value 93.13% [standard deviation (SD) = 2.72%] and 92.93% (SD = 2.77%), respectively. The void diameters reach the mean value equal to 0.061 mm (SD = 0.044 mm) for LMPA-Q and 0.074 mm (SD = 0.052 mm) for REL61. The results are presented in the form of histograms, plot boxes and X-ray images. Some selected solder joints were observed with 3D computer tomography.

Originality/value

The statistical analyses are carried out on the basis of 2D X-ray images with using Origin software. They enable to compare features of various solder pastes recommended by manufacturers as low voiding. The results might be useful for solder paste manufacturers or electronic manufacturing services.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 9 April 2018

Shanti Kiran Zade, Suresh Babu V. and Sai Srinadh K.V.

The purpose of this study is to manufacture test boards for re-enacting plant or field situations where vacuum chamber for expelling gas bubbles and autoclave equipment would not…

Abstract

Purpose

The purpose of this study is to manufacture test boards for re-enacting plant or field situations where vacuum chamber for expelling gas bubbles and autoclave equipment would not be accessible. This research focuses on the examination and enhancement of tensile strength for the nanocomposites consisting of uniaxial glass fiber mats, nanoclay (NC) and epoxy.

Design/methodology/approach

The parameters considered are the weight content of Cloisite 15A NC, the volume of glass fiber (Vgf) and the direction of glass fibers (θ). The composites are made by hand lay-up technique and tested according to ASTM D 638 standard. Taguchi L9 orthogonal array is used to design the experiments.

Findings

The results imply that the orientation of fibers exhibited high significance with a p-value of 0.001 for the upgrade of strength. NC percentage and the volume of fiber have a low effect as the p-values obtained were 0.375 and 0.294. Confirmation tests were performed at the optimal levels of parameters and the outcomes were in the permissible range of the anticipated values of S/N ratio and mean tensile strength. The negligible effect of nanoclay is due to the lack of infusion of resin into the d-spacing of clay layers due to the low configuration settings of mixing conditions which was confirmed by XRD studies. The negligible effect of glass fiber volume is due to the void content and lack of stress transfer between fibers uniformly due to the void content and improper mixing of nanoclay.

Research limitations/implications

The limitation of this study is that a low-speed mechanical stirrer was used to mix NC in the epoxy and the mixture was not subjected to vacuum and ultrasonication for degassing and deagglomeration.

Practical implications

These composites can be used as substitute materials in place of metallic parts in the aerospace and automobile sector. These composites can be used in civil structures instead of steel and concrete, which have low strength-to-weight ratio and where the requirement of strength is in the range of 60 to 390 MPa.

Social implications

The composites can be used in a variety of applications, for example, structural works, automotive panels and low-cost housing.

Originality/value

This research gives an idea about the combined contribution of NC, Vgf and “θ” to the improvement of tensile strength of the glass-epoxy composite.

Details

World Journal of Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 June 2022

Chethan Savandaiah, Julia Maurer, Bernhard Plank, Georg Steinbichler and Janak Sapkota

3D printing techniques such as material extrusion based additive manufacturing provide a promising and cost effective manufacturing technique. However, the main challenges in…

Abstract

Purpose

3D printing techniques such as material extrusion based additive manufacturing provide a promising and cost effective manufacturing technique. However, the main challenges in industrial applications remain with the quality assurance of mass produced parts. The purpose of this study is to investigate the effect of compression moulding as a rapid consolidation method for 3D printed composites, with an aim to reduce voids and defects and thus improving quality assurance of printed parts.

Design/methodology/approach

To develop an understanding of the inherent voids in 3D parts and the influence on mechanical properties, material extrusion additively manufactured (MEX) parts were post consolidated by using compression moulding at elevated temperature.

Findings

This study comparatively investigates the influence of carbon fibre length, undergoing process induced scission during filament extrusion and IM and its impact on void content and mechanical properties. It was found that the post consolidation significantly reduced the voids and the mechanical properties were significantly improved compared to the nonconsolidated material extrusion additively manufactured parts, reaching values similar to those of the IM parts.

Practical implications

Adaptation of extrusion-based additive manufacturing with hybridisation of reliable compression moulding technology transcends into series production of highly adaptive end user applications, such as drones, advanced sports prosthetics, competitive cycling and more.

Originality/value

This paper adds to the current understanding of 3D printing and provides a step towards quality assurance for mass production.

Details

Rapid Prototyping Journal, vol. 28 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 October 2020

Mozhgan Sayanjali, Amir Masood Rezadoust and Foroud Abbassi Sourki

This paper aims to focus on the development of the three-dimensional (3D) printing filaments based on acrylonitrile butadiene styrene (ABS) copolymer and…

Abstract

Purpose

This paper aims to focus on the development of the three-dimensional (3D) printing filaments based on acrylonitrile butadiene styrene (ABS) copolymer and styrene-ethylene/butylene-styrene (SEBS) block copolymer, with tailored viscoelastic properties and controlled flow during the 3D printing process.

Design/methodology/approach

In this investigation, ABS was blended with various amounts of SEBS via a melt mixing process. Then the ABS/SEBS filaments were prepared by a single-screw extruder and printed by the FDM method. The rheological properties were determined using an MCR 501 from Anton-Paar. The melt flow behavior of ABS/SEBS filaments was determined. The morphology of the filaments was studied by scanning electron microscope and the mechanical (tensile and impact) properties, surface roughness and void content of printed samples were investigated.

Findings

The rheological results can accurately interpret what drives the morphology and mechanical properties’ changes in the blends. The impact strength, toughness, elongation-at-break and anisotropy in mechanical properties of ABS samples were improved concurrently by adding 40 Wt.% of SEBS. The optimal tensile properties of blend containing 40 Wt.% SEBS samples were obtained at −45°/+45° raster angle, 0.05 mm layer thickness and XYZ build orientation. Optimized samples showed an 890% increase in elongation compared to neat ABS. Also, the impact strength of ABS samples showed a 60% improvement by adding 40 Wt.% SEBS.

Originality/value

The paper simultaneously evaluates the effects of material composition and 3D printing parameters (layer thickness, raster angle and build orientation) on the rheology, morphology, mechanical properties and surface roughness. Also, a mechanical properties comparison between printed samples and their compression-molded counterpart was conducted.

Details

Rapid Prototyping Journal, vol. 26 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 June 2018

Agata Skwarek, Balázs Illés, Krzysztof Witek, Tamás Hurtony, Jacek Tarasiuk, Sebastian Wronski and Beata Kinga Synkiewicz

This paper aims to investigate the quality and reliability of solder joints prepared from Pb-free alloys on direct bounded Cu (DBC) substrates. Two types of solder alloys were…

248

Abstract

Purpose

This paper aims to investigate the quality and reliability of solder joints prepared from Pb-free alloys on direct bounded Cu (DBC) substrates. Two types of solder alloys were studied: Sn90.95Ag3.8Cu0.7Sb1.4Ni0.15Bi3.0, with a high melting point of 225°C, and Sn42Bi58, with low a melting point of 138°C.

Design/methodology/approach

Capacitor components of size 1806 were soldered on DBC substrates by using convection reflow soldering and vacuum vapor-phase soldering technologies. A part of the samples was subjected to the thermal shock test. The structure of the solder joints and the content of the voids were investigated using three-dimensional X-ray tomography. The mechanical strength of the joints was evaluated using the shear force test, and the microstructure of the joints was studied on metallographic cross sections by using scanning electron microscopy.

Findings

It was found that the number of voids is not related directly to the mechanical strength of the solder joints. The mechanical strength of the solder joints depends more on the amount of Ag3Sn precipitation, Au precipitation and the intermetallic layer in the solder joints. In some cases, the thermal shock test caused micro-cracks around the Au precipitation because of a mismatch of Au, AuSn4 and Sn in terms of coefficients of thermal expansion.

Originality/value

DBC substrates are usually used for power electronics, where the quality of the solder joints is even more important than in the case of commercial electronics.

Details

Soldering & Surface Mount Technology, vol. 30 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 January 1993

W.B. Hance and N.C. Lee

The mechanisms for void formation are investigated for applications involving solder paste in surface mount technology. Generally, voids are caused by the outgassing of entrapped…

Abstract

The mechanisms for void formation are investigated for applications involving solder paste in surface mount technology. Generally, voids are caused by the outgassing of entrapped flux in the sandwiched solder during reflow. The voiding is dictated mainly by the solderability of metallisation, and increases with decreasing solderability of metallisation, decreasing flux activity, increasing metal load of powder, and increasing coverage area under the lead of the joint. Decrease in the solder powder particle size has only a slightly negative effect on voiding. The data indicate that voiding is also a function of the timing between the coalescing of solder powder and the elimination of immobile metallisation oxide. The sooner the paste coalescence occurs, the worse the voiding will be. Increase in voiding is usually accompanied by an increasing fraction of large voids, suggesting that factors causing voiding will have an even greater impact on the joint reliability than shown by the total‐ void‐volume analysis results. Preliminary data suggest that certain predry treatment and flux solvent with higher boiling point appear to cause increased voiding.

Details

Soldering & Surface Mount Technology, vol. 5 no. 1
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 1 September 2005

Benlih Huang, Arnab Dasgupta and Ning‐Cheng Lee

Tombstoning and voiding have been plaguing the surface mount assembly industry for decades. The recent global move toward lead‐free soldering and the extensive adoption of…

1680

Abstract

Purpose

Tombstoning and voiding have been plaguing the surface mount assembly industry for decades. The recent global move toward lead‐free soldering and the extensive adoption of microvia technology further aggravate the problems. The present study investigates the impact of SnAgCu (SAC) alloy composition on these important issues.

Design/methodology/approach

In this study, tombstoning and voiding at microvias are studied for a series of SAC lead‐free solders, with an attempt to identify a possible “composition window” for controlling these problems. Properties which may be related to these problems, such as alloy surface tension, alloy melting pattern, and solder wetting behaviour, were investigated in order to assess the critical characteristics required to control these problems.

Findings

The results indicate that the tombstoning of SAC alloys is greatly influenced by the solder composition. Both the wetting force and the wetting time at a temperature well above the melting point have no correlation with the tombstoning frequencies. Because the tombstoning is caused by imbalanced wetting forces, the results suggest that the tombstoning may be controlled by the wetting at the onset of the paste melting stage. A maximum tombstoning incidence was observed for the 95.5Sn3.5Ag1Cu alloy. The tombstoning rate decreased with increasing deviation in Ag content from this composition. A differential scanning calorimetry (DSC) study indicated that this was mainly due to the increasing presence of the pasty phase in the solders, which result in a slower wetting speed at the onset of solder paste melting stage. Surface tension plays a minor role, with lower surface tension correlating with a higher tombstoning rate. The voiding rate at the microvias was studied by employing simulated microvias. The voiding level was lowest for the 95.5Sn3.8Ag0.7Cu and 95.5Sn3.5Ag1Cu alloys, and increases with a further decrease in the Ag content. The results indicate that voiding at microvias is governed by the via filling and the exclusion of fluxes. The voiding rate decreased with decreasing surface tension and increasing wetting force, which in turn is dictated by the solder wetting or spreading. Both low surface tension and high solder wetting prevents the flux from being entrapped within a microvia. A fast wetting speed may also facilitate reducing voiding. However, this factor is considered not as important as the final solder coverage area.

Research limitations/implications

In general, compositions which deviate from the ternary eutectic SAC in Ag content, particularly with a Ag content lower than 3.5Ag, exhibit a greater solid fraction at the onset of melting, resulting in a lower tombstoning rate, presumably due to a slower wetting speed. The SAC compositions with an Ag content lower than 3.5 per cent, such as 2.5Ag, resulted in a lower tombstoning rate with minimal risk of forming Ag3Sn intermetallic platelets. On the other hand, ternary eutectic SAC exhibits a lower surface tension resulting in an easier solder spread or solder wetting, and consequently exhibit a higher tombstoning frequency and a lower incidence of voiding.

Practical implications

Provides a solution to the tombstoning problem in lead‐free soldering.

Originality/value

The present study provided a solution to the tombstoning problem encountered in lead free soldering by controlling the SAC solder alloy compositions.

Details

Soldering & Surface Mount Technology, vol. 17 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 February 2013

Yong‐Won Lee, Keun‐Soo Kim and Katsuaki Suganuma

The purpose of this paper is to propose a solution procedure to minimize/eliminate voiding and spattering defects in the assembly of 0201 chip components with micro via‐in pads…

Abstract

Purpose

The purpose of this paper is to propose a solution procedure to minimize/eliminate voiding and spattering defects in the assembly of 0201 chip components with micro via‐in pads and 95 wt.%Sn‐5 wt.%Sb solder alloy.

Design/methodology/approach

In total, four different micro via‐in pad designs were compared (via‐hole opening size): ultra small via‐in pads (d: 10 μm), small via‐in pads (d: 20 μm), and large via‐in pads (d: 60 μm), as well as designs with no via‐in pads and capped via‐in pads. Two process variables were also evaluated for the goal of achieving a high‐yield assembly solution in micro via‐in pad and lead‐free solder systems. Potential factors, such as the preheat conditions of the reflow profile and stencil aperture size, which might affect voiding and spattering in solder joints with micro via‐in pad, were investigated. Solder voiding frequency and size were also determined from X‐ray inspection and sample cross‐section analysis.

Findings

The results indicated that larger via‐holes were seen to create bigger voiding than smaller via‐holes. For smaller via‐holes, spattering is a greater problem than voiding in solder joints. Ultra small via‐in pads generated higher spattering compared to no via‐in pads and capped via‐in pads. Capped via‐in pads exhibited the best results in preventing voiding and flux spattering, and provided a wide process window for the selection of process parameters. It is also indicated that spattering was found to rapidly reduced with both increasing stencil opening size and use of reflow profile with long‐preheat conditions.

Originality/value

The findings provide certain process guidelines for surface‐mount assembly with via‐in pad substrate design. The strategy is to prevent voiding and spattering by adopting capped via‐in pads, if possible, when applying micro via with the 95 wt.%Sn‐5 wt.%Sb solder alloy system.

Details

Soldering & Surface Mount Technology, vol. 25 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 6000