Search results

1 – 10 of over 1000
Article
Publication date: 11 September 2019

Swapnil Vyavahare, Soham Teraiya, Deepak Panghal and Shailendra Kumar

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique…

2450

Abstract

Purpose

Fused deposition modelling (FDM) is the most economical additive manufacturing technique. The purpose of this paper is to describe a detailed review of this technique. Total 211 research papers published during the past 26 years, that is, from the year 1994 to 2019 are critically reviewed. Based on the literature review, research gaps are identified and the scope for future work is discussed.

Design/methodology/approach

Literature review in the domain of FDM is categorized into five sections – (i) process parameter optimization, (ii) environmental factors affecting the quality of printed parts, (iii) post-production finishing techniques to improve quality of parts, (iv) numerical simulation of process and (iv) recent advances in FDM. Summary of major research work in FDM is presented in tabular form.

Findings

Based on literature review, research gaps are identified and scope of future work in FDM along with roadmap is discussed.

Research limitations/implications

In the present paper, literature related to chemical, electric and magnetic properties of FDM parts made up of various filament feedstock materials is not reviewed.

Originality/value

This is a comprehensive literature review in the domain of FDM focused on identifying the direction for future work to enhance the acceptability of FDM printed parts in industries.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 June 2021

Debashis Mishra and Anil Kumar Das

The purpose of the experimental investigation was to optimize the process parameters of the fused deposition modeling (FDM) technique. The optimization of the process was…

Abstract

Purpose

The purpose of the experimental investigation was to optimize the process parameters of the fused deposition modeling (FDM) technique. The optimization of the process was performed to identify the relationship between the chosen factors and the tensile strength of acrylonitrile butadiene styrene (ABS) and carbon fiber polylactic acid (PLA) thermoplastic material, FDM printed specimens. The relationship was demonstrated by using the linear experimental model analysis, and a prediction expression was established. The developed prediction expression can be used for the prediction of tensile strength of selected thermoplastic materials at a 95% confidence level.

Design/methodology/approach

The Taguchi L9 experimental methodology was used to plan the total number of experiments to be performed. The process parameters were chosen as three at three working levels. The working range of chosen factors was the printing speed (60, 80 and 100mm/min), 40%, 60% and 80% as the infill density and 0.1mm, 0.2mm and 0.3mm as the layer thickness. The fused deposition modeling process parameters were optimized to get the maximum tensile strength in FDM printed ABS and carbon fiber PLA thermoplastic material specimens.

Findings

The optimum condition was achieved by the process optimization, and the desired results were obtained. The maximum desirability was achieved as 0.98 (98%) for the factors, printing speed 100mm/min, infill density 60mm and layer thickness 0.3mm. The strength of the ABS specimen was predicted to be 23.83MPa. The observed strength value was 23.66MPa. The maximum desirability was obtained as 1 (100%) for the factors, printing speed 100mm/min, infill density 60mm and layer thickness 0.2mm. The strength of the carbon fiber PLA specimen was predicted to be 26.23MPa, and the obtained value was 26.49MPa.

Research limitations/implications

The research shows the useful process parameters and their suitable working conditions to print the tensile specimens of the ABS and carbon fiber PLA thermoplastics by using the fused deposition modeling technique. The process was optimized to identify the most influential factor, and the desired optimum condition was achieved at which the maximum tensile strength was reported. The produced prediction expression can be used to predict the tensile strength of ABS and carbon fiber PLA filaments.

Practical implications

The results obtained from the experimental investigation are useful to get an insight into the FDM process and working limits to print the parts by using the ABS and carbon fiber PLA material for various industrial and structural applications.

Social implications

The results will be useful in choosing the suitable thermoplastic filament for the various prototyping and structural applications. The products that require freedom in design and are difficult to produce by most of the conventional techniques can be produced at low cost and in less time by the fused deposition modeling technique.

Originality/value

The process optimization shows the practical exposures to state an optimum working condition to print the ABS and carbon fiber PLA tensile specimens by using the FDM technique. The carbon fiber PLA shows better strength than ABS thermoplastic material.

Article
Publication date: 7 June 2013

Alberto Boschetto, Veronica Giordano and Francesco Veniali

The paper aims to predict the surface roughness of fused deposition modelling prototypes. Since average roughness is not comprehensive, this study aims to extend the…

2254

Abstract

Purpose

The paper aims to predict the surface roughness of fused deposition modelling prototypes. Since average roughness is not comprehensive, this study aims to extend the characterization to all the roughness parameters obtainable by a profilometric analysis.

Design/methodology/approach

A theoretical model of the 3D profile is supplied as a function of process parameters and part shape. A suitable geometry was designed and prototyped for validation. Data were measured by a profilometer and complemented by microscopic analysis. A methodology based on the proposed model was applied to optimise prototype fabrication in two practical cases.

Findings

The proposed profile is effective in describing the micro‐geometrical surface of fused deposition modelling prototypes. The third dimension enables the calculation of amplitude, spatial and hybrid roughness parameters.

Research limitations/implications

Because of mathematical assumptions and technological aspects, the validity of the model presents limitations related to the deposition angle.

Practical implications

The method is an effective tool in the process planning stage: it enables knowing in advance how to assure part specifications delivering a set of technical choices. Two practical applications point out the usability in the product development and process parameters optimisation.

Originality/value

This work fulfils an identified need to predict a complete surface characterization of fused deposition modelling technology.

Details

Rapid Prototyping Journal, vol. 19 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 October 2021

Yanen Wang, Ray Tahir Mushtaq, Ammar Ahmed, Ammar Ahmed, Mudassar Rehman, Mudassar Rehman, Aqib Mashood Khan, Shubham Sharma, Dr Kashif Ishfaq, Haider Ali and Thierno Gueye

Additive manufacturing (AM) technology has a huge influence on the real world because of its ability to manufacture massively complicated geometrics. The purpose of this…

Abstract

Purpose

Additive manufacturing (AM) technology has a huge influence on the real world because of its ability to manufacture massively complicated geometrics. The purpose of this study is to use CiteSpace (CS) visual analysis to identify fused deposition modeling (FDM) research and development patterns to guide researchers to decide future research and provide a framework for corporations and organizations to prepare for the development in the rapid prototyping industry. Three-dimensional printing (3DP) is defined to budget minimize manufactured input and output for aviation and the medical product industrial sectors. 3DP has implemented its potential in the Coronavirus Disease of 2019 (COVID-19) reaction.

Design/methodology/approach

First, 396 original publications were extracted from the web of science (WOS) with the comprehensive list and did scientometrics analysis in CS software. The parameters are specified in CS including the span (from 2011 to 2019, one year slice for the co-authorship and the co-accordance analysis), visualization (show the merged networks), specific criteria for selection (top 20%), node form (author, organization, region, reference cited; cited author, journal and keywords) and pruning (pathfinder and slicing network). Finally, correlating data was studied and showed the results of the visualization study of FDM research were shown.

Findings

The framework of FDM information is beginning to take shape. About hot research topics, there are “Morphology,” “Tensile Property by making Blends,” “Use of Carbon nanotube in 3DP” and “Topology optimization.” Regarding the latest research frontiers of FDM printing, there are “Fused Filament Fabrication,” “AM,” in FDM printing. Where “Post-processing” and “environmental impact” are the research hotspots in FDM printing. These research results can provide insight into FDM printing and useful information to consider the existing studies and developments in FDM researchers’ analysis.

Research limitations/implications

Despite some important obtained results through FDM-related publications’ visualization, some deficiencies remain in this research. With >99% of articles written in English, the input data for CS was all downloaded from WOS databases, resulting in a language bias of papers in other languages and neglecting other data sources. Although, there are several challenges being faced by the FDM that limit its wide variety of applications. However, the significance of the current work concerning the technical and engineering prospects is discussed herein.

Originality/value

First, the novelty of this work lies in describing the FDM approach in a Scientometric way. In Scientometric investigation, leading writers, organizations, keywords, hot research and emerging knowledge points were explained. Second, this research has thoroughly and comprehensively examined the useful sustainability effects, i.e. economic sustainability, energy-based sustainability, environmental sustainability, of 3DP in industrial development in qualitative and quantitative aspects by 2025 from a global viewpoint. Third, this work also described the practical significance of FDM based on 3DP since COVID-19. 3DP has stepped up as a vital technology to support improved healthcare and other general response to emergency situations.

Article
Publication date: 29 June 2022

Piyush Suresh Mundada, Che-Hao Yang and Roland K. Chen

The purpose of this study is to propose the use of a pre-deposition heating system for fused filament fabrication (FFF) as a means to enhance interlayer bonding by…

Abstract

Purpose

The purpose of this study is to propose the use of a pre-deposition heating system for fused filament fabrication (FFF) as a means to enhance interlayer bonding by elevating the substrate temperature. The effects of the heating on thermal profile at the bonding interface and the mechanical properties of three-dimensional printed parts are investigated.

Design/methodology/approach

A 12-W laser head is integrated to a commercial printer as the pre-deposition heating system. The laser beam heats up substate before the deposition of a fresh filament. Effects of laser powers are investigated and the thermal profile is measured with thermocouple, infrared camera and finite element model. The correlation between the temperature at the bonding interface and the bonding quality is investigated by conducting tensile testing and neck width measurement with microscope.

Findings

The pre-deposition heating system is proven to be effective in enhancing the inter-layer strength in FFF parts. Tensile testing of specimens along build direction (Z) shows an increase of around 50% in ultimate strength. A linear relationship is observed between the pre-deposition temperature at bond interface and bonding strength. It is evident that elevating the pre-deposition temperature promotes interlayer polymer diffusion as shown by the increased neck width between layers.

Originality/value

Thermocouples that are sandwiched between layers are used to achieve accurate measurement of the interfacial temperature. The temperature profiles under pre-deposition heating are analyzed and correlated to the interlayer bonding strengths.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 September 2018

Huanxiong Xia, Jiacai Lu and Gretar Tryggvason

The purpose of this paper is to continue to describe the development of a comprehensive methodology for fully resolved numerical simulations of fused deposition modeling.

Abstract

Purpose

The purpose of this paper is to continue to describe the development of a comprehensive methodology for fully resolved numerical simulations of fused deposition modeling.

Design/methodology/approach

A front-tracking/finite volume method introduced in Part I to simulate the heat transfer and fluid dynamics of the deposition of a polymer filament on a fixed bed is extended by adding an improved model for the injection nozzle, including the shrinkage of the polymer as it cools down, and accounting for stresses in the solid.

Findings

The accuracy and convergence properties of the new method are tested by grid refinement, and the method is shown to produce convergent solutions for the shape of the filament, the temperature distribution, the shrinkage and the solid stresses.

Research limitations/implications

The method presented in the paper focuses on modeling the fluid flow, the cooling and solidification and volume changes and residual stresses, using a relatively simple viscoelastic constitutive model. More complex material models, depending, for example, on the evolution of the conformation tensor, are not included.

Practical implications

The ability to carry out fully resolved numerical simulations of the fused deposition process is expected to be critical for the validation of mathematical models for the material behavior, to help explore new deposition strategies and to provide the “ground truth” for the development of reduced-order models.

Originality/value

The paper completes describing the development of the first numerical method for fully resolved simulation of fused filament modeling.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 August 2017

Ying-Guo Zhou, Bei Su and Lih-sheng Turng

Although the feasibility and effectiveness of the fused deposition modeling (FDM) method have been proposed and developed, studies of applying this technology to various…

Abstract

Purpose

Although the feasibility and effectiveness of the fused deposition modeling (FDM) method have been proposed and developed, studies of applying this technology to various materials are still needed for researching its applicability, especially with regard to polymer blends and composites. The purpose of this paper is to study the deposition-induced effect and the effect of compatibilizers on the mechanical properties of polypropylene and polycarbonate (PP/PC) composites.

Design/methodology/approach

For this purpose, three different deposition modes for PP/PC composites with or without compatibilizers were used for the FDM method and tested for tensile properties. Also, parts with the same materials were made by injection molding and used for comparison. In addition, different deposition speeds were used to investigate the different deposition-induced effects. Furthermore, the behavior of the mechanical properties was clarified with scanning electron microscope images of the fracture surfaces.

Findings

The research results suggest that the deposition orientation has a significant influence on the mechanical behavior of PP/PC composite FDM parts. The results also indicate that there is a close relationship between the mechanical properties and morphological structures which are deeply influenced by compatibilization. Compared with injection molded parts, the ductility of the FDM parts can be dramatically improved due to the formation of fibrils and micro-fibrils by the deposition induced during processing.

Originality/value

This is the first paper to investigate a PP/PC composite FDM process. The results of this paper verified the applicability of PP/PC composites to FDM technology. It is also the first time that the deposition-induced effect during FDM has been investigated and studied.

Details

Rapid Prototyping Journal, vol. 23 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 January 2022

Chitralekha Nahar and Pavan Kumar Gurrala

The thermal behavior at the interfaces (of the deposited strands) during fused filament fabrication (FFF) technique strongly influences bond formation and it is a time…

Abstract

Purpose

The thermal behavior at the interfaces (of the deposited strands) during fused filament fabrication (FFF) technique strongly influences bond formation and it is a time- and temperature-dependent process. The processing parameters affect the thermal behavior at the interfaces and the purpose of the paper is to simulate using temperature-dependent (nonlinear) thermal properties rather than constant properties.

Design/methodology/approach

Nonlinear temperature-dependent thermal properties are used to simulate the FFF process in a simulation software. The finite-element model is first established by comparing the simulation results with that of analytical and experimental results of acrylonitrile butadiene styrene and polylactic acid. Strand temperature and time duration to reach critical sintering temperature for the bond formation are estimated for one of the deposition sequences.

Findings

Temperatures are estimated at an interface and are then compared with the experimental results, which shows a close match. The results of the average time duration (time to reach the critical sintering temperature) of strands with the defined deposition sequences show that the first interface has the highest average time duration. Varying processing parameters show that higher temperatures of the extruder and envelope along with higher extruder diameter and lower convective heat transfer coefficient will have more time available for bonding between the strands.

Originality/value

A novel numerical model is developed using temperature-dependent (nonlinear) thermal properties to simulate FFF processes. The model estimates the temperature evolution at the strand interfaces. It helps to evaluate the time duration to reach critical sintering temperature (temperature above which the bond formation occurs) as it cools from extrusion temperature.

Article
Publication date: 1 June 1996

M. Atif Yardimci and Selçuk Güçeri

Explains the fused deposition process and examines the rationale behind the cooling process model. Outlines the complexity of the problems and characteristics of fused

2311

Abstract

Explains the fused deposition process and examines the rationale behind the cooling process model. Outlines the complexity of the problems and characteristics of fused deposition. Presents a general formulation for road cooling followed by results and their implications. Concludes with proposed directions for future work.

Details

Rapid Prototyping Journal, vol. 2 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 February 2021

Mohammadreza Lalegani Dezaki, Mohd Khairol Anuar Mohd Ariffin and Saghi Hatami

The purpose of this paper is to review research studies on process optimisation and machine development that lead to the enhancement of final products in various aspects…

1051

Abstract

Purpose

The purpose of this paper is to review research studies on process optimisation and machine development that lead to the enhancement of final products in various aspects of the fused deposition modelling (FDM) process.

Design/methodology/approach

An overview of the literature, focussing on process parameters, machine developments and material characterisations. This study investigates recent research studies that studied FDM capabilities in printing a vast range of materials from thermoplastics to metal alloys.

Findings

FDM is one of the most common techniques in additive manufacturing (AM) processes. Many parameters in this technology have effects on three-dimensional printed products. Therefore, it is necessary to obtain the optimum elements, for example, build orientation, layer thickness, nozzle diameter, infill pattern and bed temperature. By selecting a proper variable range of parameters, the layers adhere strongly and building end-use products of high quality are achievable. A vast range of materials and their properties from polymers to composite-based polymers are presented. Novel techniques to print metal alloys and composites are examined to increase the productivity of the FDM process. Additionally, defects such as shrinkage and warpage are discussed to eliminate the system’s limitations and improve the quality of final products. Multi-axis and mobile machines brought enhancements throughout the process to eliminate obstacles such as staircase defects in the conventional FDM process. In brief, recent developments were identified and a summary of major improvements was discussed in this study for future research.

Originality/value

This paper is an overview that provides information about research and developments in FDM. This review focusses on process optimisation and obstacles in printing polymers, composites, geopolymers and novel materials. Therefore, machine characteristics were examined to find out the accessibility of printing novel materials for different applications.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000