Search results

1 – 10 of 115
Article
Publication date: 29 April 2022

Nathalia Rose Silva da Purificação, Vinícius Barbosa Henrique, Amilton Amorim, Andrea Carneiro and Guilherme Henrique Barros de Souza

The purpose of the study is to compare methodologies for mapping a historic building, with image capture by smartphones and drones, using photogrammetric techniques for…

Abstract

Purpose

The purpose of the study is to compare methodologies for mapping a historic building, with image capture by smartphones and drones, using photogrammetric techniques for three-dimensional (3D) modeling of the structure. Processes and products are also analyzed, as well as possibilities for storing and visualizing data for structuring a cadastre of historical and artistic heritage are studied.

Design/methodology/approach

For mapping with smartphones, the overlapping of photographs was guaranteed, with data acquisition using three different cameras, on the same date as the aerial survey. The models were made from different combinations of camera use. For storage, a conceptual model based on ISO 19.152:2012 is proposed, which was implemented in the MongoDB, resulting in a database for storage. The visualization was carried out on the Cesium ion platform.

Findings

The results indicate that the terrestrial 3D reconstruction using smartphones is an efficient alternative to the historical and artistic cadastre, presenting texture quality superior to the aerial survey in a shorter production time. When dealing with the conceptual model, the LADM (Land Administration Domain Model) standardization guarantees interoperability and facilitates data exchange. In addition, it proved to be flexible for the creation of thematic profiles, supporting their effective storage. The insertion of data in the visualization platform was simple and effective, and it even generated sharing links for visualization of the models.

Originality/value

The study analyses a low-cost method with the use of easily accessible devices, with a combination of methodologies and applied techniques. The data storage and visualization method is also simple and flexible, suitable for application in the cadastre of historical heritage.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 30 April 2021

Miquel Reina Ortiz, Mario Santana Quintero, Clemencia Vernaza, Patricia Ramírez, Fernando Montejo Gaitán and Juana Segura Escobar

The purpose of this contribution is to demonstrate the importance of interdisciplinary collaboration in integrating advanced and emerging digital techniques in the appropriate and…

Abstract

Purpose

The purpose of this contribution is to demonstrate the importance of interdisciplinary collaboration in integrating advanced and emerging digital techniques in the appropriate and sustainable documentation of heritage sites in Latin America. Existing collaboration between the Universidad del Externado de Colombia, the Colombian Institute of Anthropology and History and the Carleton Immersive Media Studio of Carleton University in Ottawa (Canada) have been sued to demonstrate the importance of this approach. The described collaboration allowed a team of students, researchers, government experts and educators to document selected pilot areas of the remarkable UNESCO World Heritage Sites of National Archeological Park of Tierradentro (UNESCO, 1995) and San Agustín Archaeological Park (UNESCO, 1995). The sophisticated digital recording techniques described, such as 3D scanning, aerial and ground photogrammetry techniques, were used to capture the site's current physical condition, emphasizing the pressing need to conserve the threatened mural paintings (Tierraadentro) and carved rock phases (San Agustin). This contribution also underlines the importance of developing the training of emerging professionals from Colombia in adopting these techniques to make their documentation more accurate, reliable and sustainable in the long term. The project's conclusions demonstrate that it is crucial to integrate emerging documentation techniques into the sustainable approach to conservation of these two important UNESCO World Heritage Sites.

Design/methodology/approach

The approach presented in this contribution makes technology more accessible to the conservation specialist in Latin America. It provides a comprehensive capacity building program that involves teaching about theory and practice, using two important UNESCO World Heritage Sites located in Colombia. It is also relevant to the interdisciplinary and institutional collaboration between two universities in the North/South areas of the continent and a government institution that effectively collaborates to provide training to emerging professionals.

Findings

The contribution summarizes the opportunities and limitations of adopting technology to make the documentation process for conservation more sustainable in low-income economies and provides a framework to implement future strategies in South America.

Originality/value

The paper raises a discussion on how the concept of sustainability of adopting new technologies in the context of Latin American countries can assist in optimizing the conservation of decorated surfaces in important UNESCO World Heritage Sites by involving capacity building of emerging professionals.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 11 no. 2
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 13 May 2022

Mustafa Onur Savaşkan and Ozan Önder Özener

This article presents a case study on the Heritage Building Information Modeling (H-BIM) application in a historic village in Bursa, Turkey. The study addresses how tailor-made…

Abstract

Purpose

This article presents a case study on the Heritage Building Information Modeling (H-BIM) application in a historic village in Bursa, Turkey. The study addresses how tailor-made and highly structured H-BIM approaches can effectively be implemented in preservation applications for historic vernacular buildings in the rural architecture context.

Design/methodology/approach

Using inexpensive digital photogrammetry techniques tightly combined with an object-oriented BIM ontology, parametric meta-modeling and object/system propagation methods, the study employed a holistic H-BIM approach for capturing the materiality, building object behaviors and indigenous construction principles of a characteristic vernacular house that were synthesized in a parametric H-BIM model. The followed stages, steps and connected methods were systematized and articulated in a prototypical H-BIM implementation framework.

Findings

The study findings suggested that the developed parametric H-BIM approach can return effective results with the combined use of low-cost and practical digital photogrammetry with BIM methods. The flexibility and adaptability of the parametric H-BIM implementation framework facilitated the synthesis of a comprehensive H-BIM model and allowed an in-depth evaluation of local architectural heritage with its physical, spatial and environmental characteristics. The proposed H-BIM approach also provided significant documentation and system-specific assessment benefits for preserving the vernacular examples which are prone to extinction especially due to structural and systemic deterioration.

Originality/value

The study proposes a feasible, practical and replicable H-BIM implementation methodology for vernacular preservation applications. The knowledge-embedded H-BIM approach, flows and techniques presented in this study provide a holistic and systematic H-BIM framework – with the integrated use of digital photogrammetry and parametric meta-modeling methods – that has the potential for the democratization of H-BIM applications in education and practice.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 May 2016

Margarida Jerónimo Barbosa, Pieter Pauwels, Victor Ferreira and Luís Mateus

Building information modeling (BIM) is most often used for the construction of new buildings. By using BIM in such projects, collaboration among stakeholders in an architecture…

3481

Abstract

Purpose

Building information modeling (BIM) is most often used for the construction of new buildings. By using BIM in such projects, collaboration among stakeholders in an architecture, engineering and construction project is improved. To even further improve collaboration, there is a move toward the production and usage of BIM standards in various countries. These are typically national documents, including guides, protocols, and mandatory regulations, that introduce guidelines about what information should be exchanged at what time between which partners and in what formats. If a nation or a construction team agrees on these guidelines, improved collaboration can come about on top of the collaboration benefits induced by the mere usage of BIM. This scenario might also be targeted for interventions in existing buildings. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, the authors investigate the general content and usage of existing BIM standards for new constructions, describing specifications about BIM deliverable documents, modeling, and collaboration procedures. The authors suggest to what extent the content in the BIM standards can also be used for interventions in existing buildings. These suggestions rely heavily on literature study, supported by on-site use case experiences.

Findings

From this research, the authors can conclude that the existing standards give a solid basis for BIM collaboration in existing building interventions, but that they need to be extended in order to be of better use in any intervention project in an existing building. This extension should happen at: data modeling level: other kinds of data formats need to be considered, coming from terrestrial laser scanning and automatic digital photogrammetry tools; at data exchange level: exchange requirements should take explicit statements about modeling tolerances and levels of (un)certainty; and at process modeling level: business process models should include information exchange processes from the very start of the building survey (BIM→facility management→BIM or regular audit).

Originality/value

BIM environments are not often used to document existing buildings or interventions in existing buildings. The authors propose to improve the situation by using BIM standards and/or guidelines, and the authors give an initial overview of components that should be included in such a standard and/or guideline.

Details

Structural Survey, vol. 34 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 12 April 2018

Abdul Fatah Firdaus Abu Hanipah and Khairul Nizam Tahar

Laser scanning technique is used to measure and model objects using point cloud data generated laser pulses. Conventional techniques to construct 3D models are time consuming…

Abstract

Purpose

Laser scanning technique is used to measure and model objects using point cloud data generated laser pulses. Conventional techniques to construct 3D models are time consuming, costly and need more manpower. The purpose of this paper is to assess the 3D model of the Sultan Salahuddin Abdul Aziz Shah Mosque’s main dome using a terrestrial laser scanner.

Design/methodology/approach

A laser scanner works through line of sight, which indicates that multiple scans need to be taken from a different view to ensure a complete data set. Targets must spread in all directions, and targets should be placed on fixed structures and flat surfaces for the normal scan and fine scan. After the scanning operation, point cloud data from the laser scanner were cleaned and registered before a 3D model could be developed.

Findings

As a result, the reconstruction of the 3D model was successfully developed. The samples are based on the triangle dimension, curve line, horizontal dimension and vertical dimension at the dome. The standard deviation and accuracy are calculated based on the comparison of the 21 samples taken between the high-resolution and low-resolution scanning data.

Originality/value

There are many ways to develop the 3D model and based on this study, the less complex ways also produce the best result. The authors implement the different types of dimensions for the 3D model assessment, which have not yet been considered in the past.

Details

International Journal of Building Pathology and Adaptation, vol. 36 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 23 July 2021

Ana Carolina Franco De Oliveira, Cristiano Saad Travassos do Carmo, Alexandre Santana Cruz and Renata Gonçalves Faisca

In developing countries, such as Brazil, the construction sector is consistently focused on the construction of new buildings, and there is no dissemination of the preservation…

Abstract

Purpose

In developing countries, such as Brazil, the construction sector is consistently focused on the construction of new buildings, and there is no dissemination of the preservation, restoration and maintenance of historic buildings. Idle buildings, due to the use and lack of maintenance, present pathological manifestations, such as moisture problems that compromise specially their thermal and energy performance. With this in mind, the purpose of this work is to create a digital model using terrestrial photogrammetry and suggest retrofit interventions based on computer simulation to improve the thermal and energy performance of a historical building.

Design/methodology/approach

The proposed methodology combined terrestrial photogrammetry using common smartphones and commercial software for historical buildings with building information modeling (historic building information modeling (HBIM)) and building energy modeling (BEM). The approach follows five steps: planning, site visit, data processing, data modeling and results. Also, as a case study, the School of Architecture and Urbanism of the Fluminense Federal University, built in 1888, was chosen to validate the approach.

Findings

A digital map of pathological manifestations in the HBIM model was developed, and interventions considering the application of expanded polystyrene in the envelope to reduce energy consumption were outlined. From the synergy between HBIM and BEM, it was concluded that the information modeled using photogrammetry was fundamental to create the energy model, and simulations were needed to optimize the possible solutions in terms of energy consumption.

Originality/value

Firstly, the work proposes a reasonable methodology to be applied in development countries without sophisticated technologies, but with acceptable precision for the study purpose. Secondly, the presented study shows that the use of HBIM for energy modeling proved to be useful to simulate possible solutions that optimize the thermal and energy performance.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 16 June 2022

Vinícius Barbosa Henrique and Marlene Salete Uberti

The cadaster goes through its fifth wave of updating, seeking agility and efficiency in cadastral registration. However, despite recent advances in remote sensors and the low cost…

42

Abstract

Purpose

The cadaster goes through its fifth wave of updating, seeking agility and efficiency in cadastral registration. However, despite recent advances in remote sensors and the low cost of remotely piloted aircraft systems (RPAS), on-site visits are still used to complete the cadastral form. Thus, this work aims to employ techniques and methodologies for remote characterization of buildings for cadastral updating purposes, reducing the need to enter the parcels.

Design/methodology/approach

The research tools used were: RPAS and MMS (mobile mapping systems), making a three-dimensional model with RPAS data, and analyzing the results from these platforms. With the 3D model, it was possible to extract measurements and characteristics.

Findings

The analysis of the 3D model with the aerial photographs obtained better results in the characterization of the buildings and is the most indicated according to the study. There were difficulties in identifying some features, such as windows frames, and it was proposed to analyze the photographs without processing, to mitigate these identifications. The cadaster form was successfully completed using a combination of the techniques in this study.

Originality/value

This study brings a first proposal for the characterization of parcels for cadastral purposes, by remote sensing techniques, reducing the entry in the parcels for filling cadastral forms, with the evaluation of the proposal in the Brazilian case.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 9 June 2023

Wahib Saif and Adel Alshibani

This paper aims to present a highly accessible and affordable tracking model for earthmoving operations in an attempt to overcome some of the limitations of current tracking…

Abstract

Purpose

This paper aims to present a highly accessible and affordable tracking model for earthmoving operations in an attempt to overcome some of the limitations of current tracking models.

Design/methodology/approach

The proposed methodology involves four main processes: acquiring onsite terrestrial images, processing the images into 3D scaled cloud data, extracting volumetric measurements and crew productivity estimations from multiple point clouds using Delaunay triangulation and conducting earned value/schedule analysis and forecasting the remaining scope of work based on the estimated performance. For validation, the tracking model was compared with an observation-based tracking approach for a backfilling site. It was also used for tracking a coarse base aggregate inventory for a road construction project.

Findings

The presented model has proved to be a practical and accurate tracking approach that algorithmically estimates and forecasts all performance parameters from the captured data.

Originality/value

The proposed model is unique in extracting accurate volumetric measurements directly from multiple point clouds in a developed code using Delaunay triangulation instead of extracting them from textured models in modelling software which is neither automated nor time-effective. Furthermore, the presented model uses a self-calibration approach aiming to eliminate the pre-calibration procedure required before image capturing for each camera intended to be used. Thus, any worker onsite can directly capture the required images with an easily accessible camera (e.g. handheld camera or a smartphone) and can be sent to any processing device via e-mail, cloud-based storage or any communication application (e.g. WhatsApp).

Article
Publication date: 13 July 2017

Erika Anneli Pärn and David Edwards

The purpose of this paper is to present a literature review of laser scanning and 3D modelling devices, modes of delivery and applications within the architecture, engineering…

Abstract

Purpose

The purpose of this paper is to present a literature review of laser scanning and 3D modelling devices, modes of delivery and applications within the architecture, engineering, construction and owner-operated sector. Such devices are inextricably linked to modern digital built environment practices, particularly when used in conjunction with as-built building information modelling (BIM) development. The research also reports upon innovative technological advancements (such as machine vision) that coalesce with 3D scanning solutions.

Design/methodology/approach

A synthesis of literature is used to develop: a hierarchy of the modes of delivery for laser scan devices; a thematic analysis of 3D terrestrial laser scan technology applications; and a componential cross-comparative tabulation of laser scan technology and specifications.

Findings

Findings reveal that the costly and labour intensive attributes of laser scanning devices have stimulated the development of hybrid automated and intelligent technologies to improve performance. Such developments are set to satisfy the increasing demand for digitisation of both existing and new buildings into BIM. Future work proposed will seek to: review what coalescence of digital technologies will provide an optimal and cost-effective solution to accurately re-constructing the digital built environment; conduct case studies that implement hybrid digital solutions in pragmatic facilities management scenarios to measure their performance and user satisfaction; and eliminate manual remodelling tasks (such as point cloud reconstruction) via the use of computational intelligence algorithms integral within cloud-based BIM platforms.

Originality/value

Although laser scanning and 3D modelling have been widely covered en passant within the literature, scant research has conducted a holistic review of the technology, its applications and future developments. This review presents concise and lucid reference guidance that will intellectually challenge, and better inform, both practitioners and researchers.

Details

Built Environment Project and Asset Management, vol. 7 no. 3
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 15 January 2024

Godfred Fobiri, Innocent Musonda and Franco Muleya

Digital data acquisition is crucial for operations in the digital transformation era. Reality capture (RC) has made an immeasurable contribution to various fields, especially in…

Abstract

Purpose

Digital data acquisition is crucial for operations in the digital transformation era. Reality capture (RC) has made an immeasurable contribution to various fields, especially in the built environment. This paper aims to review RC applications, potentials, limitations and the extent to which RC can be adopted for cost monitoring of construction projects.

Design/methodology/approach

A mixed-method approach, using Bibliometric analysis and the PRISMA framework, was used to review and analyse 112 peer-reviewed journal articles from the Scopus and Web of Science databases.

Findings

The study reveals RC has been applied in various areas in the built environment, but health and safety, cost and labour productivity monitoring have received little or no attention. It is proposed that RC can significantly support cost monitoring owing to its ability to acquire accurate and quick digital as-built 3D point cloud data, which contains rich measurement points for the valuation of work done.

Research limitations/implications

The study’s conclusions are based only on the Scopus and Web of Science data sets. Only English language documents were approved, whereas others may be in other languages. The research is a non-validation of findings using empirical data to confirm the data obtained from RC literature.

Practical implications

This paper highlights the importance of RC for cost monitoring in construction projects, filling knowledge gaps and enhancing project outcomes.

Social implications

The implementation of RC in the era of the digital revolution has the potential to improve project delivery around the world today. Every project’s success is largely determined by the availability of precise and detailed digital data. RC applications have pushed for more sustainable design, construction and operations in the built environment.

Originality/value

The study has given research trends on the extent of RC applications, potentials, limitations and future directions.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 115