Search results

1 – 10 of over 2000
Article
Publication date: 19 January 2024

Kenneth Lawani, Farhad Sadeghineko, Michael Tong and Mehmethan Bayraktar

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D laser

68

Abstract

Purpose

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D laser scanning technologies. This case study integrated 3D laser point cloud scans with BIM to explore the effects of BIM adoption on ongoing construction project, whilst evaluating the utility of 3D laser scanning technology for producing structural 3D models by converting point cloud data (PCD) into BIM.

Design/methodology/approach

The primary data acquisition adopted the use of Trimble X7 laser scanning process, which is a set of data points in the scanned space that represent the scanned structure. The implementation of BIM with the 3D PCD to explore the precision and effectiveness of the construction processes as well as the as-built condition of a structure was precisely captured using the 3D laser scanning technology to recreate accurate and exact 3D models capable of being used to find and fix problems during construction.

Findings

The findings indicate that the integration of BIM and 3D laser scanning technology has the tendency to mitigate issues such as building rework, improved project completion times, reduced project cost, enhanced interdisciplinary communication, cooperation and collaboration amongst the project duty holders, which ultimately enhances the overall efficiency of the construction project.

Research limitations/implications

The acquisition of data using 3D laser scanner is usually conducted from the ground. Therefore, certain aspects of the building could potentially disturb data acquisition; for example, the gable and sections of eaves (fascia and soffit) could be left in a blind spot. Data acquisition using 3D laser scanner technology takes time, and the processing of the vast amount of data acquired is laborious, and if not carefully analysed, could result in errors in generated models. Furthermore, because this was an ongoing construction project, material stockpiling and planned construction works obstructed and delayed the seamless capture of scanned data points.

Originality/value

These findings highlight the significance of integrating BIM and 3D laser scanning technology in the construction process and emphasise the value of advanced data collection methods for effectively managing construction projects and streamlined workflows.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 12 April 2018

Abdul Fatah Firdaus Abu Hanipah and Khairul Nizam Tahar

Laser scanning technique is used to measure and model objects using point cloud data generated laser pulses. Conventional techniques to construct 3D models are time consuming…

Abstract

Purpose

Laser scanning technique is used to measure and model objects using point cloud data generated laser pulses. Conventional techniques to construct 3D models are time consuming, costly and need more manpower. The purpose of this paper is to assess the 3D model of the Sultan Salahuddin Abdul Aziz Shah Mosque’s main dome using a terrestrial laser scanner.

Design/methodology/approach

A laser scanner works through line of sight, which indicates that multiple scans need to be taken from a different view to ensure a complete data set. Targets must spread in all directions, and targets should be placed on fixed structures and flat surfaces for the normal scan and fine scan. After the scanning operation, point cloud data from the laser scanner were cleaned and registered before a 3D model could be developed.

Findings

As a result, the reconstruction of the 3D model was successfully developed. The samples are based on the triangle dimension, curve line, horizontal dimension and vertical dimension at the dome. The standard deviation and accuracy are calculated based on the comparison of the 21 samples taken between the high-resolution and low-resolution scanning data.

Originality/value

There are many ways to develop the 3D model and based on this study, the less complex ways also produce the best result. The authors implement the different types of dimensions for the 3D model assessment, which have not yet been considered in the past.

Details

International Journal of Building Pathology and Adaptation, vol. 36 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 13 July 2017

Erika Anneli Pärn and David Edwards

The purpose of this paper is to present a literature review of laser scanning and 3D modelling devices, modes of delivery and applications within the architecture, engineering…

Abstract

Purpose

The purpose of this paper is to present a literature review of laser scanning and 3D modelling devices, modes of delivery and applications within the architecture, engineering, construction and owner-operated sector. Such devices are inextricably linked to modern digital built environment practices, particularly when used in conjunction with as-built building information modelling (BIM) development. The research also reports upon innovative technological advancements (such as machine vision) that coalesce with 3D scanning solutions.

Design/methodology/approach

A synthesis of literature is used to develop: a hierarchy of the modes of delivery for laser scan devices; a thematic analysis of 3D terrestrial laser scan technology applications; and a componential cross-comparative tabulation of laser scan technology and specifications.

Findings

Findings reveal that the costly and labour intensive attributes of laser scanning devices have stimulated the development of hybrid automated and intelligent technologies to improve performance. Such developments are set to satisfy the increasing demand for digitisation of both existing and new buildings into BIM. Future work proposed will seek to: review what coalescence of digital technologies will provide an optimal and cost-effective solution to accurately re-constructing the digital built environment; conduct case studies that implement hybrid digital solutions in pragmatic facilities management scenarios to measure their performance and user satisfaction; and eliminate manual remodelling tasks (such as point cloud reconstruction) via the use of computational intelligence algorithms integral within cloud-based BIM platforms.

Originality/value

Although laser scanning and 3D modelling have been widely covered en passant within the literature, scant research has conducted a holistic review of the technology, its applications and future developments. This review presents concise and lucid reference guidance that will intellectually challenge, and better inform, both practitioners and researchers.

Details

Built Environment Project and Asset Management, vol. 7 no. 3
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 18 June 2019

Chao Chen, Llewellyn Tang, Craig Matthew Hancock and Penghe Zhang

The purpose of this paper is to introduce the development of an innovative mobile laser scanning (MLS) method for 3D indoor mapping. The generally accepted and used procedure for…

Abstract

Purpose

The purpose of this paper is to introduce the development of an innovative mobile laser scanning (MLS) method for 3D indoor mapping. The generally accepted and used procedure for this type of mapping is usually performed using static terrestrial laser scanning (TLS) which is high-cost and time-consuming. Compared with conventional TLS, the developed method proposes a new idea with advantages of low-cost, high mobility and time saving on the implementation of a 3D indoor mapping.

Design/methodology/approach

This method integrates a low-cost 2D laser scanner with two indoor positioning techniques – ultra-wide band (UWB) and an inertial measurement unit (IMU), to implement a 3D MLS for reality captures from an experimental indoor environment through developed programming algorithms. In addition, a reference experiment by using conventional TLS was also conducted under the same conditions for scan result comparison to validate the feasibility of the developed method.

Findings

The findings include: preset UWB system integrated with a low-cost IMU can provide a reliable positioning method for indoor environment; scan results from a portable 2D laser scanner integrated with a motion trajectory from the IMU/UWB positioning approach is able to generate a 3D point cloud based in an indoor environment; and the limitations on hardware, accuracy, automation and the positioning approach are also summarized in this study.

Research limitations/implications

As the main advantage of the developed method is low-cost, it may limit the automation of the method due to the consideration of the cost control. Robotic carriers and higher-performance 2D laser scanners can be applied to realize panoramic and higher-quality scan results for improvements of the method.

Practical implications

Moreover, during the practical application, the UWB system can be disturbed by variances of the indoor environment, which can affect the positioning accuracy in practice. More advanced algorithms are also needed to optimize the automatic data processing for reducing errors caused by manual operations.

Originality/value

The development of this MLS method provides a novel idea that integrates data from heterogeneous systems or sensors to realize a practical aim of indoor mapping, and meanwhile promote the current laser scanning technology to a lower-cost, more flexible, more portable and less time-consuming trend.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 June 2001

Cynthia L. Istook and Su‐Jeong Hwang

The ability to customise garments for fit is directly tied to the availability of a comprehensive, accurate set of measurements. To obtain accurate physical measurements, a basic…

4503

Abstract

The ability to customise garments for fit is directly tied to the availability of a comprehensive, accurate set of measurements. To obtain accurate physical measurements, a basic knowledge and set of skills are required that are not often found in the average salesperson at a retail clothing outlet. The development of three‐dimensional body‐scanning technologies may have significant potential for use in the apparel industry, particularly for customisation or mass customisation strategies to be employed. The purpose of this study was to review all the 3D body scanning systems currently available and to determine the underlying principles that allow these systems to work. Specifications of each system were compared in order to provide some direction for further research into the integration of these systems with current apparel CAD pattern design or pattern generation technologies.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. 5 no. 2
Type: Research Article
ISSN: 1361-2026

Keywords

Article
Publication date: 19 January 2024

Mohamed Marzouk and Mohamed Zaher

Facility management gained profound importance due to the increasing complexity of different systems and the cost of operation and maintenance. However, due to the increasing…

56

Abstract

Purpose

Facility management gained profound importance due to the increasing complexity of different systems and the cost of operation and maintenance. However, due to the increasing complexity of different systems, facility managers may suffer from a lack of information. The purpose of this paper is to propose a new facility management approach that links segmented assets to the vital data required for managing facilities.

Design/methodology/approach

Automatic point cloud segmentation is one of the most crucial processes required for modelling building facilities. In this research, laser scanning is used for point cloud acquisition. The research utilises region growing algorithm, colour-based region-growing algorithm and Euclidean cluster algorithm.

Findings

A case study is worked out to test the accuracy of the considered point cloud segmentation algorithms utilising metrics precision, recall and F-score. The results indicate that Euclidean cluster extraction and region growing algorithm revealed high accuracy for segmentation.

Originality/value

The research presents a comparative approach for selecting the most appropriate segmentation approach required for accurate modelling. As such, the segmented assets can be linked easily with the data required for facility management.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 20 June 2016

Lars Lindner, Oleg Sergiyenko, Julio C. Rodríguez-Quiñonez, Moises Rivas-Lopez, Daniel Hernandez-Balbuena, Wendy Flores-Fuentes, Fabian Natanael Murrieta-Rico and Vera Tyrsa

The purpose of this paper is the presentation and research of a novel robot vision system, which uses laser dynamic triangulation, to determine three-dimensional (3D) coordinates…

2400

Abstract

Purpose

The purpose of this paper is the presentation and research of a novel robot vision system, which uses laser dynamic triangulation, to determine three-dimensional (3D) coordinates of an observed object. The previously used physical operation principle of discontinuous scanning method is substituted by continuous method. Thereby applications become possible that were previously limited by this discretization.

Design/methodology/approach

The previously used prototype No. 2, which uses stepping motors to realize a discontinuous laser scan, was substituted by the new developed prototype No. 3, which contains servomotors, to achieve a continuous laser scan. The new prototype possesses only half the width and turns out to be significantly smaller and therefore lighter than the old one. Furthermore, no transmissions are used, which reduce the systematic error of laser positioning and increase the system reliability.

Findings

By using a continuous laser scan method instead of discontinuous laser scan method, dead zones in the laser scanner field can be eliminated. Thereby, also by changing the physical operation principle, the implementation of applications is allowed, which previously was limited by the fixed step size or by the object distance under observation. By using servomotors instead of stepping motors, also a significant reduced positioning time can be accomplished maintaining the relative positioning error less than 1 per cent.

Originality/value

The originality is based on the substitution of the physical operation principle of discontinuous by continuous laser scan. The previously used stepping motors discretized the laser scanner field and thereby produced dead zones, where 3D coordinates cannot be detected. These stepping motors were substituted by servomotors to revoke these disadvantages and provide a continuous laser scan, where dead zones in the field of view get eliminated and the step response of the laser scanner accelerated.

Details

Industrial Robot: An International Journal, vol. 43 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 March 2023

Xiaojun Wu, Bo Liu, Peng Li and Yunhui Liu

Existing calibration methods mainly focus on the camera laser-plane calibration of a single laser-line length, which is not convenient and cannot guarantee the consistency of the…

Abstract

Purpose

Existing calibration methods mainly focus on the camera laser-plane calibration of a single laser-line length, which is not convenient and cannot guarantee the consistency of the results when several three-dimensional (3D) scanners are involved. Thus, this study aims to provide a unified step for different laser-line length calibration requirements for laser profile measurement (LPM) systems.

Design/methodology/approach

3D LPM is the process of converting physical objects into 3D digital models, wherein camera laser-plane calibration is critical for ensuring system precision. However, conventional calibration methods for 3D LPM typically use a calibration target to calibrate the system for a single laser-line length, which needs multiple calibration patterns and makes the procedure complicated. In this paper, a unified calibration method was proposed to automatically calibrate the camera laser-plane parameters for the LPM systems with different laser-line lengths. The authors designed an elaborate planar calibration target with different-sized rings that mounted on a motorized linear platform to calculate the laser-plane parameters of the LPM systems. Then, the camera coordinates of the control points are obtained using the intersection line between the laser line and the planar target. With a new proposed error correction model, the errors caused by hardware assembly can be corrected. To validate the proposed method, three LPM devices with different laser-line lengths are used to verify the proposed system. Experimental results show that the proposed method can calibrate the LPM systems with different laser-line lengths conveniently with standard steps.

Findings

The repeatability and accuracy of the proposed calibration prototypes were evaluated with high-precision workpieces. The experiments have shown that the proposed method is highly adaptive and can automatically calibrate the LPM system with different laser-line lengths with high accuracy.

Research limitations/implications

In the repeatability experiments, there were errors in the measured heights of the test workpieces, and this is because the laser emitter had the best working distance and laser-line length.

Practical implications

By using this proposed method and device, the calibration of the 3D scanning laser device can be done in an automatic way.

Social implications

The calibration efficiency of a laser camera device is increased.

Originality/value

The authors proposed a unified calibration method for LPM systems with different laser-line lengths that consist of a motorized linear joint and a calibration target with elaborately designed ring patterns; the authors realized the automatic parameter calibration.

Details

Robotic Intelligence and Automation, vol. 43 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 30 March 2010

Robert Bogue

The purpose of this paper is to provide a review of three‐dimensional (3D) measurement technologies and their applications.

1139

Abstract

Purpose

The purpose of this paper is to provide a review of three‐dimensional (3D) measurement technologies and their applications.

Design/methodology/approach

This paper first describes 3D measuring techniques and then considers a selection of key applications, citing a number of specific examples. Reference is also made to certain new developments and research activities.

Findings

It is shown that both active and passive techniques are used to conduct 3D measurements. The former includes various forms of laser scanning such as time of flight, triangulation and phase measurements and photogrammetry is the main passive method. Laser‐based Doppler shift techniques are used to monitor dynamic phenomena, notably vibration, in three dimensions. These methods are used across a diversity of industries and disciplines in a wide and varied range of applications.

Originality/value

The paper provides a technical review of the leading 3D measurement technologies and their uses.

Details

Sensor Review, vol. 30 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 November 2018

Kinjiro Amano, Eric C.W. Lou and Rodger Edwards

Building information modelling (BIM) is a digital representation of the physical and functional characteristics of a building. Its use offers a range of benefits in terms of…

Abstract

Purpose

Building information modelling (BIM) is a digital representation of the physical and functional characteristics of a building. Its use offers a range of benefits in terms of achieving the efficient design, construction, operation and maintenance of buildings. Applying BIM at the outset of a new build project should be relatively easy. However, it is often problematic to apply BIM techniques to an existing building, for example, as part of a refurbishment project or as a tool supporting the facilities management strategy, because of inadequacies in the previous management of the dataset that characterises the facility in question. These inadequacies may include information on as built geometry and materials of construction. By the application of automated retrospective data gathering for use in BIM, such problems should be largely overcome and significant benefits in terms of efficiency gains and cost savings should be achieved.

Design/methodology/approach

Laser scanning can be used to collect geometrical and spatial information in the form of a 3D point cloud, and this technique is already used. However, as a point cloud representation does not contain any semantic information or geometrical context, such point cloud data must refer to external sources of data, such as building specification and construction materials, to be in used in BIM.

Findings

Hyperspectral imaging techniques can be applied to provide both spectral and spatial information of scenes as a set of high-resolution images. Integrating of a 3D point cloud into hyperspectral images would enable accurate identification and classification of surface materials and would also convert the 3D representation to BIM.

Originality/value

This integrated approach has been applied in other areas, for example, in crop management. The transfer of this approach to facilities management and construction would improve the efficiency and automation of the data transition from building pathology to BIM. In this study, the technological feasibility and advantages of the integration of laser scanning and hyperspectral imaging (the latter not having previously been used in the construction context in its own right) is discussed, and an example of the use of a new integration technique is presented, applied for the first time in the context of buildings.

Details

Journal of Facilities Management, vol. 17 no. 1
Type: Research Article
ISSN: 1472-5967

Keywords

1 – 10 of over 2000