Search results

1 – 10 of over 14000
Article
Publication date: 1 May 2001

Pralay Pal

In recent days, rapid machining through digital prototyping has been popular for its applicability in a wide range of complex and useful parts. Rapid construction of…

1936

Abstract

In recent days, rapid machining through digital prototyping has been popular for its applicability in a wide range of complex and useful parts. Rapid construction of prototypes from point cloud data based on section plane method is available, which is an approximate method. Discusses some suitable methodology for conversion of point cloud data to a physical prototype where data acquisition is through a mechanical touch trigger probing process using CNC milling machine. The process is quite useful for reverse engineering of complex sculptured parts. A concept called tangent plane method is adopted for the generation of 3D geometry on point cloud data of sculptured parts with due emphasis on probe radius compensation after data capture and tool radius compensation during tool‐path generation. Computer simulated results are presented, based on real‐world point cloud data.

Details

Rapid Prototyping Journal, vol. 7 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 November 2022

Xufeng Liang, Zhenhua Cai, Chunnian Zeng, Zixin Mu, Zifan Li, Fan Yang, Tingyang Chen, Shujuan Dong, Chunming Deng and Shaopeng Niu

The application of thermal barrier coatings (TBCs) allows aero-engine blades to operate at higher temperatures with higher efficiency. The preparation of the TBCs…

Abstract

Purpose

The application of thermal barrier coatings (TBCs) allows aero-engine blades to operate at higher temperatures with higher efficiency. The preparation of the TBCs increases the surface roughness of the blade, which impacts the thermal cycle life and thermal insulation performance of the coating. To reduce the surface roughness of blades, particularly the blades with small size and complex curvature, this paper aims to propose a method for industrial robot polishing trajectory planning based on on-site measuring point cloud.

Design/methodology/approach

The authors propose an integrated robotic polishing trajectory planning method using point cloud processing technical. At first, the acquired point cloud is preprocessed, which includes filtering and plane segmentation algorithm, to extract the blade body point cloud. Then, the point cloud slicing algorithm and the intersection method are used to create a preliminary contact point set. Finally, the Douglas–Peucker algorithm and pose frame estimation are applied to extract the tool-tip positions and optimize the tool contact posture, respectively. The resultant trajectory is evaluated by simulation and experiment implementation.

Findings

The target points of trajectory are not evenly distributed on the blade surface but rather fluctuate with surface curvature. The simulated linear and orientation speeds of the robot end could be relatively steady over 98% of the total time within 20% reduction of the rest time. After polishing experiments, the coating roughness on the blade surface is reduced dramatically from Ra 7–8 µm to below Ra 1.0 µm. The removal of the TBCs is less than 100 mg, which is significantly less than the weight of the prepared coatings. The blade surface becomes smoothed to a mirror-like state.

Originality/value

The research on robotic polishing of aero-engine turbine blade TBCs is worthwhile. The real-time trajectory planning based on measuring point cloud can address the problem that there is no standard computer-aided drawing model and the geometry and size of the workpiece to be processed differ. The extraction and optimization of tool contact points based on point cloud features can enhance the smoothness of the robot movement, stability of the polishing speed and performance of the blade surface after polishing.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 30 August 2022

Zhao Xu, Yangze Liang, Hongyu Lu, Wenshuo Kong and Gang Wu

Construction schedule delays and quality problems caused by construction errors are common in the field of prefabricated buildings. The effective monitoring of the…

Abstract

Purpose

Construction schedule delays and quality problems caused by construction errors are common in the field of prefabricated buildings. The effective monitoring of the construction project process is one of the key factors for the success of a project. How to effectively monitor the construction process of prefabricated building construction projects is an urgent problem to be solved. Aiming at the problems existing in the monitoring of the construction process of prefabricated buildings, this paper proposes a monitoring method based on the feature extraction of point cloud model.

Design/methodology/approach

This paper uses Trimble X7 3D laser scanner to complete field data collection experiments. The point cloud data are preprocessed, and the prefabricated component segmentation and geometric feature measurement are completed based on the PCL platform. Aiming at the problem of noisy points and large amount of data in the original point cloud data, the preprocessing is completed through the steps of constructing topological relations, thinning, and denoising. According to the spatial position relationship and geometric characteristics of prefabricated frame structure, the segmentation algorithm flow is designed in this paper. By processing the point cloud data of single column and beam members, the quality of precast column and beam members is measured. The as-built model and as-designed model are compared to realize the visual monitoring of construction progress.

Findings

The experimental results show that the dimensional measurement accuracy of beam and column proposed in this paper is more than 95%. This method can effectively detect the quality of prefabricated components. In the aspect of progress monitoring, the visualization of real-time progress monitoring is realized.

Originality/value

This paper proposed a new monitoring method based on feature extraction of the point cloud model, combined with three-dimensional laser scanning technology. This method allows for accurate monitoring of the construction process, rapid detection of construction information, and timely detection of construction quality errors and progress delays. The treatment process based on point cloud data has strong applicability, and the real-time point cloud data transfer treatment can guarantee the timeliness of monitoring.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 August 2022

Siyuan Huang, Limin Liu, Xiongjun Fu, Jian Dong, Fuyu Huang and Ping Lang

The purpose of this paper is to summarize the existing point cloud target detection algorithms based on deep learning, and provide reference for researchers in related…

Abstract

Purpose

The purpose of this paper is to summarize the existing point cloud target detection algorithms based on deep learning, and provide reference for researchers in related fields. In recent years, with its outstanding performance in target detection of 2D images, deep learning technology has been applied in light detection and ranging (LiDAR) point cloud data to improve the automation and intelligence level of target detection. However, there are still some difficulties and room for improvement in target detection from the 3D point cloud. In this paper, the vehicle LiDAR target detection method is chosen as the research subject.

Design/methodology/approach

Firstly, the challenges of applying deep learning to point cloud target detection are described; secondly, solutions in relevant research are combed in response to the above challenges. The currently popular target detection methods are classified, among which some are compared with illustrate advantages and disadvantages. Moreover, approaches to improve the accuracy of network target detection are introduced.

Findings

Finally, this paper also summarizes the shortcomings of existing methods and signals the prospective development trend.

Originality/value

This paper introduces some existing point cloud target detection methods based on deep learning, which can be applied to a driverless, digital map, traffic monitoring and other fields, and provides a reference for researchers in related fields.

Details

Sensor Review, vol. 42 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 23 September 2020

Siyuan Huang, Limin Liu, Jian Dong, Xiongjun Fu and Leilei Jia

Most of the existing ground filtering algorithms are based on the Cartesian coordinate system, which is not compatible with the working principle of mobile light detection…

Abstract

Purpose

Most of the existing ground filtering algorithms are based on the Cartesian coordinate system, which is not compatible with the working principle of mobile light detection and ranging and difficult to obtain good filtering accuracy. The purpose of this paper is to improve the accuracy of ground filtering by making full use of the order information between the point and the point in the spherical coordinate.

Design/methodology/approach

First, the cloth simulation (CS) algorithm is modified into a sorting algorithm for scattered point clouds to obtain the adjacent relationship of the point clouds and to generate a matrix containing the adjacent information of the point cloud. Then, according to the adjacent information of the points, a projection distance comparison and local slope analysis are simultaneously performed. These results are integrated to process the point cloud details further and the algorithm is finally used to filter a point cloud in a scene from the KITTI data set.

Findings

The results show that the accuracy of KITTI point cloud sorting is 96.3% and the kappa coefficient of the ground filtering result is 0.7978. Compared with other algorithms applied to the same scene, the proposed algorithm has higher processing accuracy.

Research limitations/implications

Steps of the algorithm are parallel computing, which saves time owing to the small amount of computation. In addition, the generality of the algorithm is improved and it could be used for different data sets from urban streets. However, due to the lack of point clouds from the field environment with labeled ground points, the filtering result of this algorithm in the field environment needs further study.

Originality/value

In this study, the point cloud neighboring information was obtained by a modified CS algorithm. The ground filtering algorithm distinguish ground points and off-ground points according to the flatness, continuity and minimality of ground points in point cloud data. In addition, it has little effect on the algorithm results if thresholds were changed.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 October 2018

Zhiming Chen, Lei Li, Yunhua Wu, Bing Hua and Kang Niu

On-orbit service technology is one of the key technologies of space manipulation activities such as spacecraft life extension, fault spacecraft capture, on-orbit debris…

Abstract

Purpose

On-orbit service technology is one of the key technologies of space manipulation activities such as spacecraft life extension, fault spacecraft capture, on-orbit debris removal and so on. It is known that the failure satellites, space debris and enemy spacecrafts in space are almost all non-cooperative targets. Relatively accurate pose estimation is critical to spatial operations, but also a recognized technical difficulty because of the undefined prior information of non-cooperative targets. With the rapid development of laser radar, the application of laser scanning equipment is increasing in the measurement of non-cooperative targets. It is necessary to research a new pose estimation method for non-cooperative targets based on 3D point cloud. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, a method based on the inherent characteristics of a spacecraft is proposed for estimating the pose (position and attitude) of the spatial non-cooperative target. First, we need to preprocess the obtained point cloud to reduce noise and improve the quality of data. Second, according to the features of the satellite, a recognition system used for non-cooperative measurement is designed. The components which are common in the configuration of satellite are chosen as the recognized object. Finally, based on the identified object, the ICP algorithm is used to calculate the pose between two frames of point cloud in different times to finish pose estimation.

Findings

The new method enhances the matching speed and improves the accuracy of pose estimation compared with traditional methods by reducing the number of matching points. The recognition of components on non-cooperative spacecraft directly contributes to the space docking, on-orbit capture and relative navigation.

Research limitations/implications

Limited to the measurement distance of the laser radar, this paper considers the pose estimation for non-cooperative spacecraft in the close range.

Practical implications

The pose estimation method for non-cooperative spacecraft in this paper is mainly applied to close proximity space operations such as final rendezvous phase of spacecraft or ultra-close approaching phase of target capture. The system can recognize components needed to be capture and provide the relative pose of non-cooperative spacecraft. The method in this paper is more robust compared with the traditional single component recognition method and overall matching method when scanning of laser radar is not complete or the components are blocked.

Originality/value

This paper introduces a new pose estimation method for non-cooperative spacecraft based on point cloud. The experimental results show that the proposed method can effectively identify the features of non-cooperative targets and track their position and attitude. The method is robust to the noise and greatly improves the speed of pose estimation while guarantee the accuracy.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 12 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Open Access
Article
Publication date: 20 October 2022

Chongjun Wu, Dengdeng Shu, Hu Zhou and Zuchao Fu

In order to improve the robustness to noise in point cloud plane fitting, a combined model of improved Cook’s distance (ICOOK) and WTLS is proposed by setting a modified…

Abstract

Purpose

In order to improve the robustness to noise in point cloud plane fitting, a combined model of improved Cook’s distance (ICOOK) and WTLS is proposed by setting a modified Cook’s increment, which could help adaptively remove the noise points that exceeds the threshold.

Design/methodology/approach

This paper proposes a robust point cloud plane fitting method based on ICOOK and WTLS to improve the robustness to noise in point cloud fitting. The ICOOK to denoise the initial point cloud was set and verified with experiments. In the meanwhile, weighted total least squares method (WTLS) was adopted to perform plane fitting on the denoised point cloud set to obtain the plane equation.

Findings

(a) A threshold-adaptive Cook’s distance method is designed, which can automatically match a suitable threshold. (b) The ICOOK is fused with the WTLS method, and the simulation experiments and the actual fitting of the surface of the DD motor are carried out to verify the actual application. (c) The results shows that the plane fitting accuracy and unit weight variance of the algorithm in this paper are substantially enhanced.

Originality/value

The existing point cloud plane fitting methods are not robust to noise, so a robust point cloud plane fitting method based on a combined model of ICOOK and WTLS is proposed. The existing point cloud plane fitting methods are not robust to noise, so a robust point cloud plane fitting method based on a combined model of ICOOK and WTLS is proposed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 19 May 2022

Zixin Mu, Zhenhua Cai, Chunnian Zeng, Zifan Li, Xufeng Liang, Fan Yang, Tingyang Chen, Shujuan Dong, Chunming Deng and Shaopeng Niu

During the process of the robotic grinding and polishing operations on aero-engine blades, the key problem of calibration error lies in fixture error and uneven margin. To…

Abstract

Purpose

During the process of the robotic grinding and polishing operations on aero-engine blades, the key problem of calibration error lies in fixture error and uneven margin. To solve this problem, this paper aims to propose a novel method to achieve rapid online calibration of the workpiece coordinate system through laser-based measurement techniques.

Design/methodology/approach

The authors propose a calibration strategy based on point cloud registration algorithm. The main principle is presented as follows: aero blade mounted on clamping end-effector is hold by industry robot, the whole device is then scanned by a 3D laser scanner to obtain its surface point cloud, and a fast segmentation method is used to acquire the point cloud of the workpiece. Combining Super4PCS algorithm with trimmed iterative closest point, we can align the key points of the scanned point cloud and the sampled points of the blade model, thus obtaining the translation and rotation matrix for calculating the workpiece coordinate and machining allowance. The proposed calibration strategy is experimentally validated, and the positioning error, as well as the margin distribution, is finally analyzed.

Findings

The experimental results show that the algorithm can well accomplish the task of cross-source, partial data and similar local features of blade point cloud registration with high precision. The total time spent on point cloud alignment of 100,000 order of magnitude blade is about 4.2 s, and meanwhile, the average point cloud alignment error is reduced to below 0.05 mm.

Originality/value

An improved point cloud registration method is proposed and introduced into the calibration process of a robotic system. The online calibration technique improves the accuracy and efficiency of the calibration process and enhances the automation of the robotic grinding and polishing system.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 May 2022

Lin Li, Xi Chen and Tie Zhang

Many metal workpieces have the characteristics of less texture, symmetry and reflectivity, which presents a challenge to existing pose estimation methods. The purpose of…

Abstract

Purpose

Many metal workpieces have the characteristics of less texture, symmetry and reflectivity, which presents a challenge to existing pose estimation methods. The purpose of this paper is to propose a pose estimation method for grasping metal workpieces by industrial robots.

Design/methodology/approach

Dual-hypothesis robust point matching registration network (RPM-Net) is proposed to estimate pose from point cloud. The proposed method uses the Point Cloud Library (PCL) to segment workpiece point cloud from scenes and a trained-well robust point matching registration network to estimate pose through dual-hypothesis point cloud registration.

Findings

In the experiment section, an experimental platform is built, which contains a six-axis industrial robot, a binocular structured-light sensor. A data set that contains three subsets is set up on the experimental platform. After training with the emulation data set, the dual-hypothesis RPM-Net is tested on the experimental data set, and the success rates of the three real data sets are 94.0%, 92.0% and 96.0%, respectively.

Originality/value

The contributions are as follows: first, dual-hypothesis RPM-Net is proposed which can realize the pose estimation of discrete and less-textured metal workpieces from point cloud, and second, a method of making training data sets is proposed using only CAD models with the visualization algorithm of the PCL.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 May 2021

Zhengtuo Wang, Yuetong Xu, Guanhua Xu, Jianzhong Fu, Jiongyan Yu and Tianyi Gu

In this work, the authors aim to provide a set of convenient methods for generating training data, and then develop a deep learning method based on point clouds to…

Abstract

Purpose

In this work, the authors aim to provide a set of convenient methods for generating training data, and then develop a deep learning method based on point clouds to estimate the pose of target for robot grasping.

Design/methodology/approach

This work presents a deep learning method PointSimGrasp on point clouds for robot grasping. In PointSimGrasp, a point cloud emulator is introduced to generate training data and a pose estimation algorithm, which, based on deep learning, is designed. After trained with the emulation data set, the pose estimation algorithm could estimate the pose of target.

Findings

In experiment part, an experimental platform is built, which contains a six-axis industrial robot, a binocular structured-light sensor and a base platform with adjustable inclination. A data set that contains three subsets is set up on the experimental platform. After trained with the emulation data set, the PointSimGrasp is tested on the experimental data set, and an average translation error of about 2–3 mm and an average rotation error of about 2–5 degrees are obtained.

Originality/value

The contributions are as follows: first, a deep learning method on point clouds is proposed to estimate 6D pose of target; second, a convenient training method for pose estimation algorithm is presented and a point cloud emulator is introduced to generate training data; finally, an experimental platform is built, and the PointSimGrasp is tested on the platform.

Details

Assembly Automation, vol. 41 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 14000