Search results

1 – 10 of over 191000
Article
Publication date: 9 May 2016

Margarida Jerónimo Barbosa, Pieter Pauwels, Victor Ferreira and Luís Mateus

Building information modeling (BIM) is most often used for the construction of new buildings. By using BIM in such projects, collaboration among stakeholders in an architecture…

3479

Abstract

Purpose

Building information modeling (BIM) is most often used for the construction of new buildings. By using BIM in such projects, collaboration among stakeholders in an architecture, engineering and construction project is improved. To even further improve collaboration, there is a move toward the production and usage of BIM standards in various countries. These are typically national documents, including guides, protocols, and mandatory regulations, that introduce guidelines about what information should be exchanged at what time between which partners and in what formats. If a nation or a construction team agrees on these guidelines, improved collaboration can come about on top of the collaboration benefits induced by the mere usage of BIM. This scenario might also be targeted for interventions in existing buildings. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, the authors investigate the general content and usage of existing BIM standards for new constructions, describing specifications about BIM deliverable documents, modeling, and collaboration procedures. The authors suggest to what extent the content in the BIM standards can also be used for interventions in existing buildings. These suggestions rely heavily on literature study, supported by on-site use case experiences.

Findings

From this research, the authors can conclude that the existing standards give a solid basis for BIM collaboration in existing building interventions, but that they need to be extended in order to be of better use in any intervention project in an existing building. This extension should happen at: data modeling level: other kinds of data formats need to be considered, coming from terrestrial laser scanning and automatic digital photogrammetry tools; at data exchange level: exchange requirements should take explicit statements about modeling tolerances and levels of (un)certainty; and at process modeling level: business process models should include information exchange processes from the very start of the building survey (BIM→facility management→BIM or regular audit).

Originality/value

BIM environments are not often used to document existing buildings or interventions in existing buildings. The authors propose to improve the situation by using BIM standards and/or guidelines, and the authors give an initial overview of components that should be included in such a standard and/or guideline.

Details

Structural Survey, vol. 34 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 30 December 2019

Abdul Rahman Ahsan Usmani, Abdalrahman Elshafey, Masoud Gheisari, Changsaar Chai, Eeydzah Binti Aminudin and Cher Siang Tan

Three dimensional (3 D) laser scanner surveying is widely used in many fields, such as agriculture, mining and heritage documentation and can be of great benefit for as-built

Abstract

Purpose

Three dimensional (3 D) laser scanner surveying is widely used in many fields, such as agriculture, mining and heritage documentation and can be of great benefit for as-built documentation in construction and facility management domains. However, there is lack of applied research and use cases integrating 3 D laser scanner surveying with building information modeling (BIM) for existing facilities in Malaysia. This study aims to develop a scan to as-built BIM workflow to use 3 D laser scanner surveying and create as-built building information models of an existing complex facility in Malaysia.

Design/methodology/approach

A case study approach was followed to develop a scan to as-built BIM workflow through four main steps: 3 D laser scanning, data preprocessing, data registration and building information modeling.

Findings

This case study proposes a comprehensive scan to as-built BIM workflow which illustrates all the required steps to create a precise 3 D as-built building information model from scans. This workflow was successfully implemented to the Eco-Home facility at the Universiti Teknologi Malaysia.

Originality/value

Scan to as-built BIM is a digital alternative to manual and tedious process of documentation of as-built condition of a facility and provides a detail process using laser scans to create as-built building information models of facilities.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 13 May 2022

Mustafa Onur Savaşkan and Ozan Önder Özener

This article presents a case study on the Heritage Building Information Modeling (H-BIM) application in a historic village in Bursa, Turkey. The study addresses how tailor-made…

Abstract

Purpose

This article presents a case study on the Heritage Building Information Modeling (H-BIM) application in a historic village in Bursa, Turkey. The study addresses how tailor-made and highly structured H-BIM approaches can effectively be implemented in preservation applications for historic vernacular buildings in the rural architecture context.

Design/methodology/approach

Using inexpensive digital photogrammetry techniques tightly combined with an object-oriented BIM ontology, parametric meta-modeling and object/system propagation methods, the study employed a holistic H-BIM approach for capturing the materiality, building object behaviors and indigenous construction principles of a characteristic vernacular house that were synthesized in a parametric H-BIM model. The followed stages, steps and connected methods were systematized and articulated in a prototypical H-BIM implementation framework.

Findings

The study findings suggested that the developed parametric H-BIM approach can return effective results with the combined use of low-cost and practical digital photogrammetry with BIM methods. The flexibility and adaptability of the parametric H-BIM implementation framework facilitated the synthesis of a comprehensive H-BIM model and allowed an in-depth evaluation of local architectural heritage with its physical, spatial and environmental characteristics. The proposed H-BIM approach also provided significant documentation and system-specific assessment benefits for preserving the vernacular examples which are prone to extinction especially due to structural and systemic deterioration.

Originality/value

The study proposes a feasible, practical and replicable H-BIM implementation methodology for vernacular preservation applications. The knowledge-embedded H-BIM approach, flows and techniques presented in this study provide a holistic and systematic H-BIM framework – with the integrated use of digital photogrammetry and parametric meta-modeling methods – that has the potential for the democratization of H-BIM applications in education and practice.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 9
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 21 January 2021

Mojtaba Valinejadshoubi, Osama Moselhi and Ashutosh Bagchi

To mitigate the problems in sensor-based facility management (FM) such as lack of detailed visual information about a built facility and the maintenance of large scale sensor…

1230

Abstract

Purpose

To mitigate the problems in sensor-based facility management (FM) such as lack of detailed visual information about a built facility and the maintenance of large scale sensor deployments, an integrated data source for the facility’s life cycle should be used. Building information modeling (BIM) provides a useful visual model and database that can be used as a repository for all data captured or made during the facility’s life cycle. It can be used for modeling the sensing-based system for data collection, serving as a source of all information for smart objects such as the sensors used for that purpose. Although few studies have been conducted in integrating BIM with sensor-based monitoring system, providing an integrated platform using BIM for improving the communication between FMs and Internet of Things (IoT) companies in cases encountered failed sensors has received the least attention in the technical literature. Therefore, the purpose of this paper is to conceptualize and develop a BIM-based system architecture for fault detection and alert generation for malfunctioning FM sensors in smart IoT environments during the operational phase of a building to ensure minimal disruption to monitoring services.

Design/methodology/approach

This paper describes an attempt to examine the applicability of BIM for an efficient sensor failure management system in smart IoT environments during the operational phase of a building. For this purpose, a seven-story office building with four typical types of FM-related sensors with all associated parameters was modeled in a commercial BIM platform. An integrated workflow was developed in Dynamo, a visual programming tool, to integrate the associated sensors maintenance-related information to a cloud-based tool to provide a fast and efficient communication platform between the building facility manager and IoT companies for intelligent sensor management.

Findings

The information within BIM allows better and more effective decision-making for building facility managers. Integrating building and sensors information within BIM to a cloud-based system can facilitate better communication between the building facility manager and IoT company for an effective IoT system maintenance. Using a developed integrated workflow (including three specifically designed modules) in Dynamo, a visual programming tool, the system was able to automatically extract and send all essential information such as the type of failed sensors as well as their model and location to IoT companies in the event of sensor failure using a cloud database that is effective for the timely maintenance and replacement of sensors. The system developed in this study was implemented, and its capabilities were illustrated through a case study. The use of the developed system can help facility managers in taking timely actions in the event of any sensor failure and/or malfunction to ensure minimal disruption to monitoring services.

Research limitations/implications

However, there are some limitations in this work which are as follows: while the present study demonstrates the feasibility of using BIM in the maintenance planning of monitoring systems in the building, the developed workflow can be expanded by integrating some type of sensors like an occupancy sensor to the developed workflow to automatically record and identify the number of occupants (visitors) to prioritize the maintenance work; and the developed workflow can be integrated with the sensors’ data and some machine learning techniques to automatically identify the sensors’ malfunction and update the BIM model accordingly.

Practical implications

Transferring the related information such as the room location, occupancy status, number of occupants, type and model of the sensor, sensor ID and required action from the BIM model to the cloud would be extremely helpful to the IoT companies to actually visualize workspaces in advance, and to plan for timely and effective decision-making without any physical inspection, and to support maintenance planning decisions, such as prioritizing maintenance works by considering different factors such as the importance of spaces and number of occupancies. The developed framework is also beneficial for preventive maintenance works. The system can be set up according to the maintenance and time-based expiration schedules, automatically sharing alerts with FMs and IoT maintenance contractors in advance about the IoT parts replacement. For effective predictive maintenance planning, machine learning techniques can be integrated into the developed workflow to efficiently predict the future condition of individual IoT components such as data loggers and sensors, etc. as well as MEP components.

Originality/value

Lack of detailed visual information about a built facility can be a reason behind the inefficient management of a facility. Detecting and repairing failed sensors at the earliest possible time is critical to ensure the functional continuity of the monitoring systems. On the other hand, the maintenance of large-scale sensor deployments becomes a significant challenge. Despite its importance, few studies have been conducted in integrating BIM with a sensor-based monitoring system, providing an integrated platform using BIM for improving the communication between facility managers and IoT companies in cases encountered failed sensors. In this paper, a cloud-based BIM platform was developed for the maintenance and timely replacement of sensors which are critical to ensure minimal disruption to monitoring services in sensor-based FM.

Details

Journal of Facilities Management , vol. 20 no. 3
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 16 May 2019

Øystein Mejlænder-Larsen

Traditionally, progress in detail engineering in construction projects is reported based on estimates and manual input from the disciplines in the engineering team. Reporting…

528

Abstract

Purpose

Traditionally, progress in detail engineering in construction projects is reported based on estimates and manual input from the disciplines in the engineering team. Reporting progress on activities in an engineering schedule manually, based on subjective evaluations, is time consuming and can reduce accuracy, especially in larger and multi-disciplinary projects. How can progress in detail engineering be reported using BIM and connected to activities in an engineering schedule? The purpose of this paper is to introduce a three-step process for reporting progress in detail engineering using building information modeling (BIM) to minimize manual reporting and increase quality and accuracy.

Design/methodology/approach

The findings of this paper are based on the studies of experiences from the execution of projects in the oil and gas industry. Data are collected from an engineering, procurement and construction (EPC) contractor and two engineering contractors using case study research.

Findings

In the first step, control objects in building information models are introduced. Statuses are added to control objects to fulfill defined quality levels related to milestones. In the second step, the control objects with statuses are used to report visual progress and aggregated in an overall progress report. In the third step, overall progress from building information models are connected to activities in an engineering schedule.

Originality/value

Existing research works related to monitoring and reporting progress using a BIM focus on construction and not on detail engineering. The research demonstrates that actual progress in detail engineering can be visualized and reported through the use of BIM and extracted to activities in an engineering schedule through a three-step process.

Article
Publication date: 23 July 2021

Ana Carolina Franco De Oliveira, Cristiano Saad Travassos do Carmo, Alexandre Santana Cruz and Renata Gonçalves Faisca

In developing countries, such as Brazil, the construction sector is consistently focused on the construction of new buildings, and there is no dissemination of the preservation…

Abstract

Purpose

In developing countries, such as Brazil, the construction sector is consistently focused on the construction of new buildings, and there is no dissemination of the preservation, restoration and maintenance of historic buildings. Idle buildings, due to the use and lack of maintenance, present pathological manifestations, such as moisture problems that compromise specially their thermal and energy performance. With this in mind, the purpose of this work is to create a digital model using terrestrial photogrammetry and suggest retrofit interventions based on computer simulation to improve the thermal and energy performance of a historical building.

Design/methodology/approach

The proposed methodology combined terrestrial photogrammetry using common smartphones and commercial software for historical buildings with building information modeling (historic building information modeling (HBIM)) and building energy modeling (BEM). The approach follows five steps: planning, site visit, data processing, data modeling and results. Also, as a case study, the School of Architecture and Urbanism of the Fluminense Federal University, built in 1888, was chosen to validate the approach.

Findings

A digital map of pathological manifestations in the HBIM model was developed, and interventions considering the application of expanded polystyrene in the envelope to reduce energy consumption were outlined. From the synergy between HBIM and BEM, it was concluded that the information modeled using photogrammetry was fundamental to create the energy model, and simulations were needed to optimize the possible solutions in terms of energy consumption.

Originality/value

Firstly, the work proposes a reasonable methodology to be applied in development countries without sophisticated technologies, but with acceptable precision for the study purpose. Secondly, the presented study shows that the use of HBIM for energy modeling proved to be useful to simulate possible solutions that optimize the thermal and energy performance.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 26 June 2019

Marjan Sadeghi, Jonathan Weston Elliott, Nick Porro and Kelly Strong

This paper aims to represent the results of a case study to establish a building information model (BIM)-enabled workflow to capture and retrieve facility information to deliver…

1622

Abstract

Purpose

This paper aims to represent the results of a case study to establish a building information model (BIM)-enabled workflow to capture and retrieve facility information to deliver integrated handover deliverables.

Design/methodology/approach

The Building Handover Information Model (BHIM) framework proposed herein is contextualized given the Construction Operation Information Exchange (COBie) and the level of development schema. The process uses Autodesk Revit as the primary BIM-authoring tool and Dynamo as an add-in for extending Revit’s parametric functionality, BHIM validation, information retrieval and documentation in generating operation and maintenance (O&M) deliverables in the end-user requested format.

Findings

Given the criticality of semantics for model elements in the BHIM and for appropriate interoperability in BIM collaboration, each discipline should establish model development and exchange protocols that define the elements, geometrical and non-geometrical information requirements and acceptable software applications early in the design phase. In this case study, five information categories (location, specifications, warranty, maintenance instructions and Construction Specifications Institute MasterFormat division) were identified as critical for model elements in the BHIM for handover purposes.

Originality/value

Design- and construction-purposed BIM is a standard platform in collaborative architecture, engineering and construction practice, and the models are available for many recently constructed facilities. However, interoperability issues drastically restrict implementation of these models in building information handover and O&M. This study provides essential input regarding BIM exchange protocols and collaborative BIM libraries for handover purposes in collaborative BIM development.

Details

Journal of Facilities Management , vol. 17 no. 3
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 15 December 2022

Andrea Parisi Kern, Fabiana Pires Rosa and Luis Bragança

Facility management (FM) is regarded as an emerging issue in civil engineering and is responsible for ensuring the building's expected performance. The purpose of this study is to…

Abstract

Purpose

Facility management (FM) is regarded as an emerging issue in civil engineering and is responsible for ensuring the building's expected performance. The purpose of this study is to analyze buildings' current FM processes for educational and high residential segments and propose an FM-building information modeling (BIM) (BIM6D) to understand the information flow and leading players with and without FM-BIM integration.

Design/methodology/approach

The research strategy was a case study with data from the FM process of two buildings. This study was carried out in three stages: diagnosis of FM of the two buildings, FM-BIM integration and information flow and leading players analysis. Maintenance activities were categorized according to periodicity and status criteria for each project element for FM-BIM integration and were visualized in the Revit design using Dynamo software.

Findings

The results of this study show differences in how FM is conducted, especially in formalization and preventive character, and similarities regarding the difficulty of foreseen and lack of control because of scattered, disconnected and incomplete information on both. The visual appeal of the FM-BIM integration facilitates information access. It optimizes the use of the digital model through the most prolonged phase of the life cycle of a building (post-occupation phase). However, FM-BIM challenges buildings that do not have digital model expertise as residential segments. This study suggests a more significant role for construction companies in these cases.

Originality/value

This study investigates BIM-FM integration of buildings in two different contexts and reveals the importance of a construction company's role in buildings in the residential segment. This study contributes with real-life cases on BIM in existing buildings, discussing the value and challenges of BIM in FM applications.

Details

Journal of Facilities Management , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 7 February 2019

Manish K. Dixit, Varusha Venkatraj, Mohammadreza Ostadalimakhmalbaf, Fatemeh Pariafsai and Sarel Lavy

The purpose of this study is to investigate factors that impede the integration of facilities management (FM) into building information modeling (BIM) technology. The use of BIM…

6087

Abstract

Purpose

The purpose of this study is to investigate factors that impede the integration of facilities management (FM) into building information modeling (BIM) technology. The use of BIM technology in the commercial construction industry has grown enormously in recent years. Its application to FM, however, is still limited. The literature highlights issues that hinder BIM–FM integration, which are studied and discussed in detail in this paper.

Design/methodology/approach

A review of literature is conducted to identify and categorize key issues hampering the application of BIM to FM. This paper has also designed a questionnaire based on a literature review and surveyed FM professionals at two industry events. Using the collected responses, these issues are analyzed and discussed using non-parametric statistical analyses.

Findings

A total of 16 issues are identified through the literature review of 54 studies under the four categories of BIM-execution and information-management, technological, cost-based and legal and contractual issues. The results of the survey of FM professionals (with 57 complete responses) reveal that the single most important issue is the lack of FM involvement in project phases when BIM is evolving.

Originality/value

The findings of this study could assist the construction industry (e.g. building-material and equipment manufacturers, design professionals, general contractors, construction managers, owners and facility managers) with creating guidelines that would help in BIM–FM integration. BIM is a virtual database that contains important design and construction information, which can be used for effective and efficient life cycle management if building data are captured completely and accurately with a facility manager’s involvement.

Article
Publication date: 5 June 2020

Majid Parchami Jalal, Tayebe Yavari Roushan, Esmatullah Noorzai and Maryam Alizadeh

This study aims at introducing a claim management model based on building information modeling (BIM) for claims that can be visualized in BIM models.

Abstract

Purpose

This study aims at introducing a claim management model based on building information modeling (BIM) for claims that can be visualized in BIM models.

Design/methodology/approach

Based on the results of a questionnaire survey, 10 claims were identified as claims that can be visualized in BIM models (named hard claims in this study). Then, a BIM-based claim management model was developed and used in a case study.

Findings

A BIM-based claim management model is represented. The claim management process through this model consists of four steps: (1) extracting project information, identifying conditions prone to claim and storing them into a relational database, (2) automatically connecting the database to building information model, (3) simulation of the claims in building information model and (4) final calculations and report.

Practical implications

The proposed model can provide benefits to parties involved in a claim, such as early identification of potential claims, large space for data storage, facilitated claim management processes, information consistency and improved collaboration.

Originality/value

There are a few studies on providing solutions to claim management based on BIM process. Hence, the original contribution of this paper is the attempt to set a link between BIM and claim management processes.

1 – 10 of over 191000