Search results

1 – 10 of over 10000
To view the access options for this content please click here
Article
Publication date: 29 April 2021

Malindu Sandanayake, Ramya Kumanayake and Achini Peiris

The main objective of the study is to present a systematic process that can assess, compare and benchmark different geographical levels environmental impacts of using…

Abstract

Purpose

The main objective of the study is to present a systematic process that can assess, compare and benchmark different geographical levels environmental impacts of using sustainable materials at construction stage.

Design/methodology/approach

Current study presents a methodological framework to evaluate environmental impacts at the construction stage of using sustainable materials through a cradle-to-gate process based quantitative LCA study. Scenario analyses and an optimisation analysis using Monte-Carlo simulation are conducted to investigate the influence of external factors on environmental impacts at different geographical regions.

Findings

Materials account for 98% of greenhouse gas (GHG) emissions. Carbon monoxide (CO) and non-methane volatile organic compounds (NMVOC) record significant non-GHG emissions. Particulate matter (PM10) emissions are significant from transportation and equipment. High significance of global warming potential (GWP) (38.98%) and photochemical oxidation formation potential (POFP) (34.49%) at global level and eutrophication potential (EP) (52.83%) and human toxicity potential (HTP) (25.30%) impacts at local level were observed. Shortest transportation distance reduces 14.91% PM10 and 4.69% nitrous oxide (NOx) emissions. Inventory variations have major influence on POFP impact at global level. Local level impacts are not significantly affected by inventory variations. Optimisation analysis indicated, high fly ash in concrete increase local level carbon emissions, if OPC concrete transportation distance is less than 23.7 km.

Research limitations/implications

Use of case-specific information for validation may lack generalisation. However, methodology can be used for future sustainable decision making over using sustainable materials in construction.

Originality/value

The study estimate environmental impacts at different geographical levels when sustainable materials are used for construction.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

To view the access options for this content please click here
Article
Publication date: 11 July 2019

Ashok Kumar Sahani, Amiya K. Samanta and Dilip K. Singharoy

Present study focuses on scope of developing sustainable heat resistant concrete by adding steel fibre (Sf) and polypropylene fibre (PPf) along with partially replacement…

Abstract

Purpose

Present study focuses on scope of developing sustainable heat resistant concrete by adding steel fibre (Sf) and polypropylene fibre (PPf) along with partially replacement of ordinary portland cement (OPC) and natural fine aggregate with fly ash (FA) and granular blast furnace slag (GBFS). Replacement percentages of FA and GBFS were 40% and 50%, whereas Sf and PPf for fibre-added mixes were 1% by volume of concrete and 0.25% by weight of cement, respectively.

Design/methodology/approach

An experimental work had been carried out to make comparison between control mix (CM), fibre-added sustainable mix (SCMF) and fibre-added control mix (CMF) with reference to weight loss, mechanical strength (compressive, split and flexure) after exposed to room temperature (27°C) to 1000°C at the interval of 200°C for 4 h of heat curing followed by furnace cooling and then natural cooling. Furthermore, microstructural analysis was executed at 27°C, 400°C and 800°C, respectively.

Findings

Colour change and hair line cracks were started to appear at 600°C. Fibre-added control mix and sustainable mix did not exhibit any significant cracks as compared to control mix even at 1000°C. Major losses were occurred at temperature higher than 600°C, loss in compressive strength was about 70% in control mix, while 60% in fibre-added mixes. SCMF exhibited the highest retention of strength with respect to all cases of mechanical strength.

Research limitations/implications

Present study is based on the slow heating condition followed by longer duration of heat curing at target temperature.

Practical implications

Present work can be helpful for the design engineer for assessing the fire deterioration of concrete structure existing near the fire establishment such as furnace and ovens. Building fire (high temperature for short duration) might be the further scope of work.

Originality/value

Concept of incorporating pozzolanic binder and calcareous fine aggregate was adopted to take the advantage pozzolanacity and fire resistivity. To the best of author’s knowledge, there is a scope for fill the research gap in this area.

Details

Journal of Structural Fire Engineering, vol. 10 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

To view the access options for this content please click here
Article
Publication date: 13 September 2021

Vijaya Prasad B., Arumairaj Paul Daniel, Anand N. and Siva Kumar Yadav

Concrete is a building material widely used for the infrastructural development. Cement is the binding material used for the development of concrete. It is the primary…

Downloads
20

Abstract

Purpose

Concrete is a building material widely used for the infrastructural development. Cement is the binding material used for the development of concrete. It is the primary cause of CO2 emission globally. The purpose of this study is to develop sustainable concrete material to satisfy the present need of construction sector. Geopolymer concrete (GPC) is a sustainable concrete developed without the use of cement. Therefore, investigations are being conducted to replace the cement by 100% with high calcium fly ash (FA) as binding material.

Design/methodology/approach

High calcium FA is used as cementitious binder, sodium hydroxide (NaOH) and sodium silicates (Na2SiO3) are used as alkaline liquids for developing the GPC. Mix proportions with different NaOH molarities of 4, 6, 8 and 10 M are considered to attain the appropriate mix. The method of curing adopted is ambient and oven curing. Workability, compressive strength and microstructure characteristics of GPC are analysed and presented.

Findings

An increase of NaOH in the mix decreases the workability. Compressive strength of 29 MPa is obtained for Mix-I with 8 M under ambient curing. A polynomial relationship is obtained to predict the compressive strength of GPC. Scanning electron microscope analysis is used to confirm the geo-polymerisation process in the microstructure of concrete.

Originality/value

This research work focuses on finding some alternative cementitious material for concrete that can replace ordinary portland cement (OPC) to overcome the CO2 emission owing to the utilisation of cement in the construction industry. An attempt has been made to use the waste material (high calcium FA) from thermal power plant for the production of GPC. GPC concrete is the novel building material and alternative to conventional concrete. It is the ecofriendly product contributing towards the improvement of the circular economy in the construction industry. There are several factors that affect the property of GPC such as type of binder material, molarity of activator solution and curing condition. The novelty of this work lies in the approach of using locally available high calcium FA along with manufactured sand for the development of GPC. As this approach is rarely investigated, to prove the attainment of compressive strength of GPC with high calcium FA, an attempt has been made during the present investigation. Other influencing parameter which affects the strength gain has also been analysed in this paper.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

To view the access options for this content please click here
Article
Publication date: 17 January 2020

Muhammad Waseem Khan and Yousaf Ali

The change in climate and depletion of natural resources because of the harmful emissions from different materials becomes a main issue for the globe. Some of the…

Abstract

Purpose

The change in climate and depletion of natural resources because of the harmful emissions from different materials becomes a main issue for the globe. Some of the developed and developing countries have focused on this issue and performed research to provide a solution. The purpose of this study is to identify the best types of concrete based on its impact on the environment and economy.

Design/methodology/approach

The life cycle assessment and life cycle cost analysis of six concrete mixtures that include construction and demolition wastes (CDW), marble sludge, rice husk and bagasse ash as a partial replacement of cement, are performed. These types of concrete are compared with each other and with ordinary concrete to select the best possible concrete type for a developing country, like Pakistan.

Findings

The results show that, although for an agricultural country like Pakistan, the agriculture wastes such as rice husk and bagasse ash are preferable to be used, if the emissions of CO2 and CO from rice husk and NOx and SO2 from bagasse ash are properly controlled. However, based on the results, it is recommended to use the CDW in concrete because of the small amount of air emissions and affordable prices.

Originality/value

Through this study, a path has been provided to construction companies and relative government organizations of Pakistan, which leads to sustainable practices in the construction industry. Moreover, the base is provided for future researchers who want to work in this area, as for Pakistan, there is no database available that helps to identify the impact of different concrete on the environment.

To view the access options for this content please click here
Article
Publication date: 22 October 2020

Angelo De Luca, Linda Chen and Koorosh Gharehbaghi

Due to the high demand of concrete, significant volume of natural resources is required, including virgin aggregates. Many studies have shown that the production of…

Abstract

Purpose

Due to the high demand of concrete, significant volume of natural resources is required, including virgin aggregates. Many studies have shown that the production of concrete has one of the highest CO2 levels. Although efforts are in place to recycle, enormous effects on landfill and the wider environment remain. Research has suggested the importance of reusing construction and demolition waste such as aggregate for use in recycled concrete. However, robust construction and demolition waste reduction strategies are required. There have been numerous researches on the use of recycled concrete and its management in the construction industry. This paper further consolidates this position.

Design/methodology/approach

This paper exhibits the barriers and benefits of using recycled aggregates for construction industry. This is achieved via reviewing the current construction and demolition waste reduction strategies used mainly in three countries: the UK, Australia and Japan. These countries were selected since they seemingly have similar construction industry and environment. Subsequently, evolving barriers and benefits of using recycled aggregates for construction industry are also reviewed and discussed. And to support such focus, robust construction and demolition waste reduction strategies will be advocated.

Findings

The findings are summarized as follows. The recycling construction and demolition waste could have a positive net benefit compared to the procurement and production of virgin aggregate materials with the same properties. This is not only financially beneficial but also environmentally viable, as fewer resources would be required to produce the same aggregate material. There are effective ways to achieve a high recycle rate target, as demonstrated by Japan. The implementation of a similar recycling process could be implemented globally to achieve a more effective recycle rate through the help of governments at all levels. By creating awareness about the financial and environmental benefits of using recycled aggregate products, large recycling companies can be also enticed to follow suit.

Practical implications

The findings from this paper can ultimately support the construction industry to further consolidate and advocate the use of recycled aggregates.

Originality/value

To achieve the research aim, this paper reviews some of the main sustainability factors of recycled aggregates (including coarse and fine aggregates) and provides comparison to virgin aggregates.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

To view the access options for this content please click here
Article
Publication date: 9 July 2021

K. Arunkumar, Muthukannan Muthiah, Suresh Kumar A., Chithambar Ganesh A. and Kanniga Devi R.

Inefficient waste disposal technique and cement production methodology caused significant environmental impacts, leading to global warming. The purpose of the research was…

Abstract

Purpose

Inefficient waste disposal technique and cement production methodology caused significant environmental impacts, leading to global warming. The purpose of the research was to invent an effective, sustainable technology to use the wastes and alternate for cement in concrete. Geopolymer technology could be the most desirable solution to use the wastes into an effective product.

Design/methodology/approach

The wood waste ash derived from nearby tea shops was used as an alternate binder for fly ash. The replacement of WWA with FA was varied from 0 to 100% at 10% intervals. In this research, setting and mechanical features of Geopolymer Concrete (GPC) along with Waste wood ash (WWA) was carried out. The influence of wood waste ash in the microstructure of the GPC was also assessed using scanning electron microscope and X-ray diffraction analysis.

Findings

The findings revealed that 30% replacement of wood waste ash was performed higher in all measured features. Besides, the formation of different phases was also observed with the inclusion of wood waste ash.

Research limitations/implications

The demand for fly ash was increased in recent years, and the fly-based GPC has required more alkaline solution and temperature curing. Hence, there was a research gap on finding an alternative binder for fly ash.

Originality/value

The research novelty was to use the wood waste ash, which has inbuilt alkaline compounds on the production of sustainable geopolymer. The finding showed that the wood waste ash could be alternate fly ash that eliminates the environmental impacts and economic thrust.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 1 February 2021

Nurizaty Zuhan, Mariyana Aida Ab Kadir, Muhammad Najmi Mohamad Ali Mastor, Shek Poi Ngian and Abdul Rahman Mohd. Sam

Concrete-filled steel hollow (CFHS) column is an innovation to improve the performance of concrete or steel column. It is believed to have high compressive strength, good…

Abstract

Purpose

Concrete-filled steel hollow (CFHS) column is an innovation to improve the performance of concrete or steel column. It is believed to have high compressive strength, good plasticity and is excellent for seismic and fire performance as compared to hollow steel column without a filler.

Design/methodology/approach

Experimental and numerical investigation has been carried out to study the performance of CFHS having different concrete in-fill and shape of steel tube.

Findings

In this paper, an extensive review of experiment performed on CFHS columns at elevated temperature is presented in different types of concrete as filling material. There are three different types of concrete filling used by the researchers, such as normal concrete (NC), reinforced concrete and pozzolanic-fly ash concrete (FC). A number of studies have conducted experimental investigation on the performance of NC casted using recycled aggregate at elevated temperature. The research gap and the recommendations are also proposed. This review will provide basic information on an innovation on steel column by application of in-filled materials.

Research limitations/implications

Design guideline is not considered in this paper.

Practical implications

Fire resistance is an important issue in the structural fire design. This can be a guideline to define the performance of the CFHS with different type of concrete filler at various exposures.

Social implications

Utilization of waste fly ash reduces usage of conventional cement (ordinary Portland cement) in concrete production and enhances its performance at elevated temperature. The new innovation in CFHS columns with FC can reduce the cost of concrete production and at the same time mitigate the environmental issue caused by waste material by minimizing the disposal area.

Originality/value

Review on the different types of concrete filler in the CFHS column. The research gap and the recommendations are also proposed.

Details

Journal of Structural Fire Engineering, vol. 12 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

To view the access options for this content please click here
Article
Publication date: 27 March 2009

Helen E. Muga, Amlan Mukherjee, James R. Mihelcic and Melanie J. Kueber

This paper aims to provide an integrated framework of life cycle assessment (LCA) and life cycle cost analysis (LCCA) for assessing alternative technologies, processes…

Abstract

Purpose

This paper aims to provide an integrated framework of life cycle assessment (LCA) and life cycle cost analysis (LCCA) for assessing alternative technologies, processes, and/or activities, with focus on concrete pavements.

Design/methodology/approach

LCA and LCCA are used to evaluate environmental and economic impacts of substituting different percentages of fly ash and slag into continuously reinforced concrete pavement (CRCP) and jointed plane concrete pavement (JPCP). Impacts are determined over different life cycle phases.

Findings

An LCA of the extraction phase indicated that JPCP pavement had 33‐62 percent less emissions than CRCP pavements, when only steel consumption was considered. When cement was considered, JPCP pavement had almost 40 percent greater emissions then CRCP for all mix types. An LCCA showed that over the entire life cycle phases studied, CRCP pavements had about 46 percent more costs than JPCP. However, when only maintenance costs were considered, CRCP pavement cost 80 percent less to maintain than JPCP over the studied period of 35 years.

Originality/value

The study is a step towards using an integrated framework to evaluate the performance of different materials and technology. The same framework could be conducted for different kinds of asphalt pavements and concrete pavements, as well as other infrastructure that makes up the built environment, with the goal of making decisions that take into account design considerations, environmental impacts, and cost effectiveness.

Details

Journal of Engineering, Design and Technology, vol. 7 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

To view the access options for this content please click here
Article
Publication date: 21 June 2021

Naga Rajesh Kanta and Markandeya Raju Ponnada

In the construction sector, river sand has turned into a costly material due to various reasons. In the current study, used foundry sand (UFS) and spent garnet sand (SGS…

Abstract

Purpose

In the construction sector, river sand has turned into a costly material due to various reasons. In the current study, used foundry sand (UFS) and spent garnet sand (SGS) are used as a partial and full replacement to sand in concrete production.

Design/methodology/approach

The objective of the work is to develop non-conventional concrete by replacing river sand with a combination of UFS (constant 20Wt.% replacement) and SGS at various percentages (20, 40, 60 and 80 Wt.%).

Findings

Compared to conventional concrete, the 28 days compressive strength of non-conventional concrete (with UFS at 20% and spent garnet sand at 20%, 40% and 60% were 8.12%, 6.77% and 0.83% higher, respectively. The 28 days split tensile strength of non-conventional concrete (UFS at 20% and SGS at 20 and 40%) were 32.2% and 51.6% higher, respectively.

Research limitations/implications

It can be concluded that 60 Wt.% of river sand can be combined replaced with 20 Wt.% UFS and 40 Wt.% SGS to produce good quality concrete whose properties are on par with conventional concrete.

Practical implications

The results showed that combined SGS and UFS can be used as a partial replacement of river sand in the manufacturing of concrete that is used in all the applications of construction sector such as buildings, bridges, dams, etc. and non-structural applications such as drainpipes, kerbs, etc.

Social implications

Disposal of industrial by-product wastes such as SGS and UFS affects the environment. A sincere attempt is made to use the same as partial replacement of river sand.

Originality/value

Based on the literature study, no work is carried out in replacing the river sand combined with SGS and UFS in concrete.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 13 October 2021

Laura Blackburne, Koorosh Gharehbaghi and Amin Hosseinian-Far

The aims and objectives of this research are to establish whether or not the transition into green building in high-rise construction is practical. This is after…

Abstract

Purpose

The aims and objectives of this research are to establish whether or not the transition into green building in high-rise construction is practical. This is after considering several perspectives including financial, economic, environmental, and social. This subsequently leads to an evaluation on whether or not the continuation with a standard conventional build of high-rise buildings remains to be the most feasible option. Such objectives, therefore, aim to allow for validation of how and why high-rise construction designs are impacted through green buildings effects.

Design/methodology/approach

Through six defined steps, the methodology commences with an introductory section of what it means to build green. This section is further broken down to evaluate what factors are involved in constructing a green building. Furthermore, the life cycle energy (LCE) is used as a framework to evaluate the knock-on effects of green buildings and subsequent high-rise construction design implications.

Findings

Through defining the ongoing relationship of green materials and sustainable design, various implications for high-rise constructions were discovered. First and foremost, it was determined that the LCE is the central consideration for any high-rise building design. In evaluating the LCE, and overall operating energy of the 50-year cycle of a building was carried out. As the results showed, the operating energy represents around 85% of the total energy that is consumed at the end of the 50 years cycle of the building. Precise LCE calculation can lead to a more efficient design for high-rise buildings. As a result, an increased understanding of the current status of green buildings within the construction industry is paramount. This understanding leads to a better insight into the contributing factors to green building in high-rise construction and the construction industry in general.

Originality/value

The potential contribution that can be gained from this research is the awareness that is raised in the research and development of green buildings in high-rise construction. This can be achieved by using certain materials such as new energy-efficient building materials, recycled materials and so on. This research will contribute to defining a new way of sustainable buildings, particularly for high-rise construction. The outcome of the research will be beneficial for practitioners such as design engineers and other related professions.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of over 10000