Search results

1 – 10 of over 17000
Article
Publication date: 1 April 2006

Masahiro Inoue and Katsuaki Suganuma

This paper investigates the variations in electrical properties of a typical isotropic conductive adhesive (ICA) made with an epoxy‐based binder that are caused by differences in…

Abstract

Purpose

This paper investigates the variations in electrical properties of a typical isotropic conductive adhesive (ICA) made with an epoxy‐based binder that are caused by differences in the curing conditions.

Design/methodology/approach

In‐situ monitoring of the various processes that were used to cure the ICA revealed that electrical conduction in the ICA specimens depends on both the high‐temperature curing conditions and the conditions during cooling to temperatures below the glass transition temperature (Tg).

Findings

The electrical resistivity of the cured ICA specimens after cooling to ambient temperature decreased with increasing degree of conversion, tending towards a convergence value that decreased with increasing curing temperature. The electrical resistivity of the specimens also varied significantly depending on the subsequent annealing process. However, the electrical resistivity achieved after annealing at temperatures above the curing temperatures clearly depended on the particular curing temperature that was used. The characteristics of the polymer structure in the adhesive binder are considered to be different, depending on the curing temperature, and this affects the electrical properties of the ICA;, i.e. the characteristics of the polymer structure obtained during the curing process affect the electrical resistance of the ICA, even after subsequent annealing processes.

Research limitations/implications

This paper discusses generalities of variation in the electrical properties of ICAs during heating and cooling processes. The variation in behaviour in practice will differ depending on the type of adhesive binder in the ICA.

Originality/value

This paper clarifies how the electrical properties of ICAs evolve during the curing, annealing and cooling processes.

Details

Soldering & Surface Mount Technology, vol. 18 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 23 May 2008

Han Jianyu, Chen Zhonghua, Tang Ying and Yu Fei

The purpose of this paper is to study the curing mechanisms, anticorrosive properties and protective mechanisms of three kinds of amine curing agents applied in a new kind of…

Abstract

Purpose

The purpose of this paper is to study the curing mechanisms, anticorrosive properties and protective mechanisms of three kinds of amine curing agents applied in a new kind of light colored water‐borne epoxy antistatic anticorrosive paint.

Design/methodology/approach

Using light color‐conductive mica, titanium oxides and environmentally‐friendly anticorrosive pigments in the two‐component water‐borne epoxy system, the light colored water‐borne antistatic anticorrosive paint was prepared. The molecular structure and curing mechanisms of the curing agents was analyzed by Fourier transform infra‐red spectroscopy, and the influence of the curing agents on anticorrosive properties and protective mechanisms was studied by electrochemical impedance spectroscopy.

Findings

The paints cured by the modified amine curing agent possessed optimal integrated properties with a coating surface resistivity of 106 Ω and the best anticorrosive performance.

Originality/value

A novel light colored water‐borne epoxy antistatic anticorrosive paint cured by the optimal curing agent could be used in corrosion protection for oil tanks to replace the traditional oil‐based antistatic anticorrosive paints.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 August 2016

Shouxu Wang, Ting Yang, Yuanming Chen, Wei He, Yongsuan Hu and Xinhong Su

The purpose of this paper is to form high density interconnection (HDI) of backboard for press-fit applications with the pre-curing conditions of conductive paste. The best…

Abstract

Purpose

The purpose of this paper is to form high density interconnection (HDI) of backboard for press-fit applications with the pre-curing conditions of conductive paste. The best condition of pre-curing conductive paste should be found to obtain good electrical and physical performance of the conductive paste and avoid the simultaneous curing behavior of prepreg.

Design/methodology/approach

A novel structure of backboard was designed by using the connection of conductive paste-filled through holes to connect two multilayers. Pre-curing conditions of conductive paste were investigated to find their effects on resistance, bond strength and volume shrinkage. The reliability of pre-curing conductive paste was also analyzed.

Findings

Pre-curing conditions led to a great influence on the resistance, bond strength and volume shrinkage of the conductive paste. The best condition of pre-curing conductive paste was chosen as the low curing temperature of 60°C and a curing time of 30 min. Cured conductive paste exhibited square resistance of 4.205 mΩ/□ and bonding strength of 22.86 N. The as-obtained pre-curing condition could improve the reliability of conductive paste. Pre-curing process of conductive paste at extremely low temperature to interconnect two multilayer structures improved the density interconnection of backboard for press-fit applications.

Originality/value

The use of HDI of backboard could lead to good assembly for high-speed signal transmission of electronic products with press-fitting components. The connection of pre-curing conductive paste for multilayers could have important function for improving the application for communication backboard.

Details

Circuit World, vol. 42 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 2 January 2018

Matthew P. Watters and Michelle L. Bernhardt

This paper presents findings from a study examining curing procedures to improve the compressive strength and hardness properties of specimens while maintaining surface quality…

Abstract

Purpose

This paper presents findings from a study examining curing procedures to improve the compressive strength and hardness properties of specimens while maintaining surface quality. All specimens were created from a standard grey, acrylic-based photopolymer and fabricated using stereolithography technology. This paper aims to investigate the effects of printing layer thickness and print orientation on specimen compressive strength, as well as the effects of thermal and light curing methods. In addition, the post-print curing depth was investigated.

Design/methodology/approach

The effects of layer thickness and print orientation were investigated on 10 × 20 mm cylinders by determining the ultimate compressive strength once cured. The compressive strength of cylinders subjected to varying thermal and light settings was also investigated to determine the optimal curing settings. The effective depth of curing was investigated on a 25.4-mm cuboidal specimen, which received both thermal and light curing.

Findings

To achieve the highest compressive strength, specimens shall be printed with the minimal layer thickness of 25 µm. Increasing temperatures up to 60° C during curing provided a 0.75-MPa increase in compressive strength per degree Celsius. However, increasing temperatures above 60° C only provided a 0.15-MPa increase in compressive strength per degree Celsius. Furthermore, curing temperatures above 110° C resulted in degraded surface quality noted by defects at the layer laminations. Specimens required a minimum light curing exposure time of four hours to reach the maximum cure at which point any increase in exposure time provided no substantial increase in compressive strength.

Originality/value

This study provides recommendations for printing parameters and curing methods to achieve the optimum mechanical properties of cured stereolithography specimens.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 2000

Andrew G. Bachmann

UV light curing of adhesives has become the method of choice for many more industrial bonding, sealing, coating, potting and tacking applications. Because faster cures provide…

Abstract

UV light curing of adhesives has become the method of choice for many more industrial bonding, sealing, coating, potting and tacking applications. Because faster cures provide more efficient manufacturing processes and lower total assembly cost, and because light curing adhesives are being used in more kinds of applications, both the range of resins and curing equipment now available has expanded dramatically. Outlines the performances of currently available UV adhesives, their application and selection of UV light sources.

Details

Assembly Automation, vol. 20 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 16 January 2007

T. Maity, B.C. Samanta, S. Dalai and A.K. Banthia

In order to study its cure response and to understand its kinetic behaviour, this paper seeks to examine how a multifunctional epoxy resin…

1962

Abstract

Purpose

In order to study its cure response and to understand its kinetic behaviour, this paper seeks to examine how a multifunctional epoxy resin, N,4‐bis(4‐(bis(2‐oxiranylmethyl)amino)‐2‐chlorobenzyl)‐3‐chloro‐N‐(2‐oxiranylmethyl)benzenamine (BCCOMB), synthesised from amine functional chloroaniline formaldehyde condensate (AFCFC) and epichlorohydrine, is cured with AFCFC as curing agent.

Design/methodology/approach

For effective curing, AFCFC (12.5 phr, part per 100 resin) was added to BCCOMB resin and mixed thoroughly for 15 minutes. The clear viscous solution was then subjected to DSC analyses for kinetics study of the curing reaction.

Findings

The AFCFC was successfully utilised as curing agents for BCCOMB as the DSC curves show complete curing exotherm. The presence of oxirane group in the BCCOMB was able to react with active hydrogen atoms of amine. This led to conversion of liquid monomers of thermoset resin into three‐dimensional network.

Research limitations/implications

In the present discussion, the curing study of BCCOMB had been done using AFCFC as a curing agent. However, other curing agents, synthesised from other amine and aldehyde, could also be used to see whether they would be effective for curing study of BCCOMB.

Originality/value

The method for curing study of multifunctional epoxy resin (BCCOMB) was novel and the cured epoxy network could find numerous applications as surface coating and adhesive on to an intricate structure.

Details

Pigment & Resin Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 September 2009

Tithi Maity and Bidhan Samanta

The purpose of this paper is to investigate the curing efficiency of amine functional aniline furfuraldehyde condensate (AFAFFC) for diglycidyl ether of bisphenol A (DGEBA) resin…

Abstract

Purpose

The purpose of this paper is to investigate the curing efficiency of amine functional aniline furfuraldehyde condensate (AFAFFC) for diglycidyl ether of bisphenol A (DGEBA) resin to achieve toughness, chemical resistance, etc.

Design/methodology/approach

To study curing reaction, the curing agent AFAFFC is synthesised first from the reaction of aniline and furfuraldehyde in acid medium and characterised by Fourier transform infrared spectroscopic analysis, elemental analysis, concentration of primary and secondary amine analysis. Then, equimolecular mixture of AFAFFC and DGEBA is subjected to curing reaction and the reaction is followed by differential scanning calorimetry (DSC) analysis. The kinetic studies of this curing reaction, mechanical properties, dynamic mechanical analysis and thermogravimetric analysis (TGA) of cured epoxy are also reported.

Findings

The DSC analysis shows the complete exotherms of effective curing reaction indicating the efficiency of AFAFFC as curing agent for DGEBA resin. The kinetic studies reveal that the curing reaction is first order. Mechanical properties reflect the brittleness of cured matrix and TGA shows that the cured matrixes are stable up to around 240°C.

Research limitations/implications

The curing agent AFAFFC has been synthesised by using aniline and furfuraldehyde. By changing amine and aldehyde, other curing agents could be synthesised and the curing efficiency of these for epoxy resin could also be studied.

Originality/value

The method for curing study of epoxy resin (DGEBA) is novel and relevant as the cured products have high performance applications in protective coatings and adhesives for most substrates.

Details

Pigment & Resin Technology, vol. 38 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 October 1973

Americus

Faster, more automated means for curing coatings as well as techniques in which the monomer polymerises to the polymer during curing readily captured the paint industry's…

Abstract

Faster, more automated means for curing coatings as well as techniques in which the monomer polymerises to the polymer during curing readily captured the paint industry's imagination. Such concepts spell greater efficiency, greater automation and, in the long run, lower costs and greater profitability. Electron beam curing and ultra‐violet curing have emerged as the two most formidable contenders in this new area. Both methods make possible curing at near ambient temperature and both rely on high energy radiation — a highly effective form of energy for chemical reactions.

Details

Pigment & Resin Technology, vol. 2 no. 10
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 1 March 1999

J.Y.H. Fuh, L. Lu, C.C. Tan, Z.X. Shen and S. Chew

Rapid prototypes formed using stereolithography (SL) method have to undergo post‐curing to increase their strength and rigidity. This study attempts to reduce, if not eliminate…

1924

Abstract

Rapid prototypes formed using stereolithography (SL) method have to undergo post‐curing to increase their strength and rigidity. This study attempts to reduce, if not eliminate, post‐cure distortion by characterising curing behaviours. Curing (both heat and UV initiated) characteristics of an acrylic‐based photopolymer under actual fabrication conditions were studied using Raman spectroscopy as well as differential scanning calorimetry (DSC) and differential scanning photo‐calorimetry (DSP). Specimens of single photopolymer lines were created using a SL machine. Raman spectroscopy was used to quantify the curing percentage at different areas on the cross‐section of these lines. Curing percentages before and after post‐curing were also obtained from the experiments. Difference in percentage of post‐curing gave an indication of the distortions faced. It was found that uncured and partially cured resins trapped within the photopolymer resulted in inhomogeneity of curing in the specimens causing shrinkage and distortion.

Details

Rapid Prototyping Journal, vol. 5 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 January 1974

Americus

The onslaught of automation in the industrial coatings area is an irreversible one. For this reason, the manufacturers who coat in‐plant seize eagerly upon developments such as…

Abstract

The onslaught of automation in the industrial coatings area is an irreversible one. For this reason, the manufacturers who coat in‐plant seize eagerly upon developments such as high‐energy radiation curing and ultraviolet curing. Interest in these techniques is developing rapidly as indicated by the large number of patents which are beginning to evolve. The advantages of these methods have been detailed in previous reviews. Some of the more recent literature is described in this article.

Details

Pigment & Resin Technology, vol. 3 no. 1
Type: Research Article
ISSN: 0369-9420

1 – 10 of over 17000