Search results

1 – 10 of 901
Article
Publication date: 1 March 2006

Alan E. Richardson

Conflicting claims have been made in relation to the effects of polypropylene fibres on the compressive strength of concrete. The purpose of this paper is to examine the effects…

2407

Abstract

Purpose

Conflicting claims have been made in relation to the effects of polypropylene fibres on the compressive strength of concrete. The purpose of this paper is to examine the effects on compressive strength of various dosages of monofilament polypropylene fibres when used in concrete. Compressive strength is widely used as the key indicator of concrete quality and therefore needs accurate determination. Monofilament fibres and air entrainment provide a similar function in that they provide freeze/thaw protection, they are both compared against a plain concrete sample to determine relative strength and density.

Design/methodology/approach

Two different concrete design strengths (medium and high) were examined with varying amounts and types of polypropylene fibre fraction/volume to establish a common link between fibre additions and reduced final compressive strength.

Findings

The findings from the test programme showed a linear reduction in strength which was observed as being directly related to fibre inclusion in concrete. Density was also found to be reduced with the addition of fibres in a similar degree to that of air entrainment.

Research limitations/implications

The lower density of concrete with polypropylene fibre additions was not scientifically explained and this aspect currently forms part of a long term freeze/thaw research programme, which will examine pore spacing and void formation compared to plain concrete.

Originality/value

This paper is of interest to clients, concrete manufacturers, concrete additive manufacturers, designers, surveyors and specifiers who need to know what effect polypropylene fibre additives have upon the final compressive strength.

Details

Structural Survey, vol. 24 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 1 July 2005

A.E. Richardson

Seeks to examine the bond strength of a large range of structural polypropylene fibres, as used in concrete, to determine the most effective fibre capable of transmitting load…

1952

Abstract

Purpose

Seeks to examine the bond strength of a large range of structural polypropylene fibres, as used in concrete, to determine the most effective fibre capable of transmitting load (N/mm2) between fibre and cement within the concrete matrix.

Design/methodology/approach

Following fibre selection characterised by the highest bond strength, determined from a series of pull out tests, BS flexural tests were carried out using high bond strength fibres (40 mm × 0.9 mm diameter used at 6 kg/m3) to determine whether or not structural polypropylene fibres had any effect on the ultimate flexural strength of fibre‐reinforced concrete, when compared with the plain control sample. Fibre orientation, type of rupture failure mode and post‐crack performance were examined.

Findings

Even structural fibre dispersion was found to be best achieved with the use of monofilament polypropylene fibres (19 mm × 22 micron used at 0.9 × kg/m3) in addition to the 6 kg/m3 structural fibre dose. Structural polypropylene fibres were found not to provide additional flexural strength however, they did provide post‐crack control, limiting the crack width with subsequent enhanced durability that in turn will provide lower life cycle costs.

Practical implications

In addition to increased durability the use of fibre reinforcement negates the need to place steel reinforcement bars.

Originality/value

Investigates the ambiguity in literature between claims made by different investigators regarding the effects of polypropylene fibres on compressive and flexural strengths.

Details

Structural Survey, vol. 23 no. 3
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 1 July 2004

A.E. Richardson

This paper makes a comparison between the electrical properties of cement grout with and without monofilament polypropylene fibre additions. The findings show a small, but…

Abstract

This paper makes a comparison between the electrical properties of cement grout with and without monofilament polypropylene fibre additions. The findings show a small, but significant difference between the electrolytic transport properties of cement grout with monofilament polypropylene fibre additions when compared to grout without fibre additions. The grout with fibre additions suggests a reduced probability of water and ion transmission, due to higher measured resistivity, which will result in enhanced durability and lower life cycle costs. Durability of reinforced concrete structures, is known to be closely linked to the water permeability of the concrete matrix. This potential trend for enhanced durability can be added to the other benefits of using monofilament polypropylene fibre in concrete, such as low absorption, freeze/thaw resistance, fire resistance and micro reinforcement.

Details

Structural Survey, vol. 22 no. 3
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 7 November 2008

Alan Richardson and Urmil V. Dave

The purpose of this paper is to examine the effect of various polypropylene fibre additions (types and volume) to concrete with regard to explosive spalling when subject to high…

Abstract

Purpose

The purpose of this paper is to examine the effect of various polypropylene fibre additions (types and volume) to concrete with regard to explosive spalling when subject to high temperatures similar to those experienced in building or tunnel fires.

Design/methodology/approach

Medium strength concrete was manufactured with varying proportions of polypropylene fibres. Plain control samples were used to determine the original concrete strength and this was used as a benchmark following high temperature heat tests to evaluate the surface condition and final compressive strength. A pilot study was used to determine an appropriate heat source for the test. This was three Bunsen burners, however sufficient heat could not be generated within 150 mm concrete cubes and the concrete was shown to be a significant insulator and fire protection for structural members. The concrete test cubes were tested in a saturated condition which may reflect conditions where concrete is used in an external environment and thus is subject to soaking.

Findings

One hundred and fifty millimetre concrete cubes with and without fibres were placed into a furnace at 1,000°C. Explosive spalling was shown to be reduced with the use of polypropylene fibres but the final compressive strength of concrete was significantly reduced and had little residual structural value after a two hour period of heating.

Research limitations/implications

As the concrete tested was saturated, this condition provided a worst case scenario with regards to the build up of hydrostatic and vapour pressure within the cube. A range of percentage moisture contents would produce a more evenly balanced view of the effects of fibres in concrete. A single grade of concrete was used for the test. As the permeability of concrete influences the rate at which steam can escape from the interior of a saturated concrete cube, testing a range of concrete strengths would show this aspect of material performance with regard to spalling and final residual strength. Further research is recommended with regard to moisture contents, strengths of concrete and a range of temperatures.

Practical implications

This research has significance for the designer, in that buildings subject to terrorist activity may suffer from impact damage and an outbreak of fire following the initial attack.

Originality/value

The use of polypropylene fibres in concrete to provide anti spalling qualities is relatively new and this research adds to the knowledge regarding fibre type and volume with regard to first spall time, total area and number of areas subject to spalling and the final compressive strength of concrete following two hours of raised temperatures.

Details

Structural Survey, vol. 26 no. 5
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 1 May 2003

Alan Richardson

Recent laboratory research has shown that small additions of monofilament polypropylene fibres in concrete, in diameter range of 22 to 35 micron by 19mm long, reduce the flow of…

1487

Abstract

Recent laboratory research has shown that small additions of monofilament polypropylene fibres in concrete, in diameter range of 22 to 35 micron by 19mm long, reduce the flow of water through the concrete matrix by preventing the transmission of water through the normal modes of ingress, e.g. capillaries, pore structure, covercrete, etc. The implications of these qualities in concrete with polypropylene fibre additions is that cement hydration will be improved, separation of aggregate will be reduced and the flow of water through concrete that causes deterioration from freeze/thaw action and rebar corrosion will be reduced, creating an environment in which enhanced durability may take place. As a consequence, lower life cycle costs and best value will be achieved for concrete use, with an ultimate reduction in the cost of maintaining the aging infrastructure. A unique aspect of this work is that heart and covercrete are analysed and compared with corroborative results.

Details

Structural Survey, vol. 21 no. 2
Type: Research Article
ISSN: 0263-080X

Keywords

Article
Publication date: 11 July 2019

Ashok Kumar Sahani, Amiya K. Samanta and Dilip K. Singharoy

Present study focuses on scope of developing sustainable heat resistant concrete by adding steel fibre (Sf) and polypropylene fibre (PPf) along with partially replacement of…

Abstract

Purpose

Present study focuses on scope of developing sustainable heat resistant concrete by adding steel fibre (Sf) and polypropylene fibre (PPf) along with partially replacement of ordinary portland cement (OPC) and natural fine aggregate with fly ash (FA) and granular blast furnace slag (GBFS). Replacement percentages of FA and GBFS were 40% and 50%, whereas Sf and PPf for fibre-added mixes were 1% by volume of concrete and 0.25% by weight of cement, respectively.

Design/methodology/approach

An experimental work had been carried out to make comparison between control mix (CM), fibre-added sustainable mix (SCMF) and fibre-added control mix (CMF) with reference to weight loss, mechanical strength (compressive, split and flexure) after exposed to room temperature (27°C) to 1000°C at the interval of 200°C for 4 h of heat curing followed by furnace cooling and then natural cooling. Furthermore, microstructural analysis was executed at 27°C, 400°C and 800°C, respectively.

Findings

Colour change and hair line cracks were started to appear at 600°C. Fibre-added control mix and sustainable mix did not exhibit any significant cracks as compared to control mix even at 1000°C. Major losses were occurred at temperature higher than 600°C, loss in compressive strength was about 70% in control mix, while 60% in fibre-added mixes. SCMF exhibited the highest retention of strength with respect to all cases of mechanical strength.

Research limitations/implications

Present study is based on the slow heating condition followed by longer duration of heat curing at target temperature.

Practical implications

Present work can be helpful for the design engineer for assessing the fire deterioration of concrete structure existing near the fire establishment such as furnace and ovens. Building fire (high temperature for short duration) might be the further scope of work.

Originality/value

Concept of incorporating pozzolanic binder and calcareous fine aggregate was adopted to take the advantage pozzolanacity and fire resistivity. To the best of author’s knowledge, there is a scope for fill the research gap in this area.

Details

Journal of Structural Fire Engineering, vol. 10 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3538

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 13 March 2017

Swapnil K. Shirsath and Subhash C. Yaragal

This study reports the performance of thermally deteriorated concrete with and without fibres. Attempts have been made to find the suitable performance of steel polypropylene (PP…

Abstract

Purpose

This study reports the performance of thermally deteriorated concrete with and without fibres. Attempts have been made to find the suitable performance of steel polypropylene (PP) hybrid fibre combination that could significantly enhance the performance of mechanical properties at elevated temperatures.

Design/methodology/approach

In this experimental investigation, concrete cubes of 100 mm in size of various compositions were cast and water-cured for 28 days, and later exposed to elevated temperatures of either 200 or 400°C or 600 and or 800°C with a retention period of 2 h. The properties like change in colour and percentage weight loss were evaluated. Ultrasonic Pulse Velocity test was used to obtain qualitative information of strength variation. Residual strength of thermally deteriorated concrete specimen was measured by destructive testing.

Findings

Steel fibre volume fraction of 1 per cent improves the compressive strength of concrete in the temperature range of 400 to 800°C. The addition of steel fibre and PP fibre (Mix 3) improves the splitting strength of the concrete at elevated temperature range of 400 to 600°C.

Originality/value

Performance enhancement is observed with hybrid fibres for temperature endurance of concrete.

Details

Journal of Structural Fire Engineering, vol. 8 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 June 2019

Amir Hamzeh Keykha

This study aims to investigate the effect of high temperature (600°C) on the compressive strength of concrete covered with a mixture of polypropylene fiber and gypsum plaster…

Abstract

Purpose

This study aims to investigate the effect of high temperature (600°C) on the compressive strength of concrete covered with a mixture of polypropylene fiber and gypsum plaster (PFGP).

Design/methodology/approach

To study the compressive strength of concrete specimens exposed to temperature, 16 cubic specimens (size: 150 mm × 150 mm × 150 mm) were made. After 28 days of processing and gaining the required strength of specimens, first, polypropylene fiber was mixed with gypsum plaster (CaSO4.2H2O) and then the concrete specimens were covered with this mixture. To cover the concrete specimens with the PFGP, the used PFGP thickness was 15 mm or 25 mm. The polypropylene rates mixed with the gypsum plaster were 1, 3 and 5 per cent. A total of 14 specimens, 12 of which were covered with PFGP, were exposed to high temperature in two target times of 90 and 180 min.

Findings

The results show that the PFGP as covering materials can improve the compressive strength lost because of the heating of the concrete specimens. The results also show that the presence of polypropylene fiber in gypsum plaster has the effect on the compressive strength lost because of the heating of the PFGP-covered concrete. The cover of PFGP having 3 per cent polypropylene fiber had the best effect on remained strength of the specimens.

Originality/value

The cover of PFGP having 3 per cent polypropylene fiber has the best effect on remained strength of the PFGP covered specimens exposed to temperature.

Details

Journal of Structural Fire Engineering, vol. 10 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 25 June 2019

Sachin B.P. and N. Suresh

The present experimental investigation attempts to study the behaviour of hybrid fibre-reinforced self-compacting concrete (HFSCC) subjected to elevated temperature. The purpose…

Abstract

Purpose

The present experimental investigation attempts to study the behaviour of hybrid fibre-reinforced self-compacting concrete (HFSCC) subjected to elevated temperature. The purpose of this study is to find out the performance of hybrid fibres of 0.5 per cent by volume of concrete (out of which 75 per cent are steel fibres and 25 per cent, polypropylene fibres). Reinforced beams were casted and tested for the flexural load-carrying capacity, and comparisons were made with the load-carrying capacity of reinforced beams without the inclusion of fibres.

Design/methodology/approach

The study includes 60 concrete cubes of 150 mm and 60 beams of 150 × 150 × 1,100 mm reinforced with minimum tension reinforcement according to IS 456-2000. The specimens were subjected to elevated temperature from 100°C to 500°C with an interval of 100°C for 2 h. The residual compressive strength and the load-carrying capacity of beams for 5-mm deflection were measured. Parameters such as load at first crack, width and length of cracks developed on the beam during the application of load were also studied.

Findings

The result shows that for self-compacting concrete without fibres (SCCWOF), there is a gain in compressive strength between 200°C and 300°C, beyond which the strength decreases. For HFSCC, the gain in strength is between 300°C and 400°C, and thereafter the strength gets reduced. The load-carrying capacity of beams reduces with an increase in temperature. An increase in load-carrying capacity (up to 40.7 per cent) for HFSCC beams is observed when compared to SCCWOF beams at 500°C.

Originality/value

Better performance was observed with the usage of fibres when the specimens were subjected to elevated temperatures.

Details

Journal of Structural Fire Engineering, vol. 10 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 901