Search results

1 – 10 of over 3000
To view the access options for this content please click here
Article

Bingsheng Xu, Yan Wu, Lina Zhang, Junwei Chen and Zhangfu Yuan

This research aims to provide a theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and…

Abstract

Purpose

This research aims to provide a theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and V-shaped substrate, which also gives guidance for those complicated welding operation objects in brazing technique.

Design/methodology/approach

Wetting experiments were performed to measure the contact angles at different temperatures of molten Sn-3.0Ag-0.5Cu wetting on the quartz substrate with an included angle of 90°. According to the experimental results, the theoretical spreading morphology of molten solder on V-shaped substrate at corresponding temperature was simulated by Surface Evolver.

Findings

The theoretical morphology profiles of the molten solder sitting on the V-shaped substrate are simulated using Surface Evolver when the molten solder reaches spreading equilibrium. The spreading mechanisms as well as the impact of surface tension and gravity on interfacial energy of the molten solder wetting on the V-shaped groove substrate are also discussed where theoretical results agree well with experiment results. The contact area between the gas and liquid phases shows a tendency of first increasing and later decreasing. Otherwise, the spreading distance and the height of the molten solder increases as the droplet volume increases as the included angle and the contact angle are given as constants, and both the interfacial energy and the gravitational energy increase as well. This research has a wide influence on predicting the outcomes in commercial impact and also gives guidance for those complicated welding operation objects in brazing technique.

Research limitations/implications

It is of very important significance in both science and practice to investigate the differences between the flat surface and V-shaped surface. Some necessary parameters including intrinsic contact angle and surface tension need to be directly measured when the droplet spreads on the flat surface. The relevant simulation conclusions on the inherent characteristics can be given based on these intrinsic parameters. Compared with the flat surface, the V-shaped substrate is chosen for further discuss on the effects of gravity on the droplet spreading behavior and the changes of apparent contact angle which can only occurs as the substrate is inclined. Therefore, this research provides theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and substrate.

Practical implications

The research is developed for verifying the accuracy of the model built in Surface Evolver. Based on this verified model, other researches on the spreading distance along y-axis and the contact area that are especially difficult to be experimentally measured can be directly simulated by Surface Evolver, which can provides a convenient method to discuss the changes of horizontal spreading distance, droplet height and contact area with increasing the included angle of V-shaped substrate or with increasing the droplet volume. Actually, the modeling results are calculated for supplying the theoretical parameters and technical guidance in the welding process.

Social implications

This research provides theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and substrate, which has a wide influence on prediction the outcomes in commercial impact and also gives guidance for those complicated welding operation objects in brazing technique.

Originality/value

Surface Evolver, can also be used to discuss the structure and spreading mechanism of droplets on V-shaped substrates, which have not been discussed before.

Details

Soldering & Surface Mount Technology, vol. 28 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

To view the access options for this content please click here
Article

Rong Li and Jun Xiong

The purpose of this study is to present how the thermal energy transmission of circular parts produced in robotized gas metal arc (GMA)-based additive manufacturing was…

Abstract

Purpose

The purpose of this study is to present how the thermal energy transmission of circular parts produced in robotized gas metal arc (GMA)-based additive manufacturing was affected by the substrate shape through finite element analysis, including distributions of thermal energy and temperature gradient in the molten pool and deposited layers.

Design/methodology/approach

Three geometric shapes, namely, square, rectangle and round were chosen in simulation, and validation tests were carried out by corresponding experiments.

Findings

The thermal energy conduction ability of the deposited layers is the best on the round substrate and the worst on the rectangular substrate. The axial maximum temperature gradients in the molten pool along the deposition path with the round substrate are the largest during the deposition process. At the deposition ending moment, the circumferential temperature gradients of all layers with the round substrate are the largest. A large temperature gradient usually stands for a good heat conduction condition. Altogether, the round substrate is more suitable for the fabrication of circular thin-walled parts.

Originality/value

The predicted thermal distributions of the circular thin-walled part with various substrate shapes are helpful to understand the influence of substrate shape on the thermal energy transmission behavior in GMA-based additive manufacturing.

Details

Rapid Prototyping Journal, vol. 25 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Bohao Xu, Xiaodong Tan, Xizhi Gu, Donghong Ding, Yuelin Deng, Zhe Chen and Jing Xu

Once an uneven substrate is aligned, traditional control theories and methods can be used on it, so aligning is of great significance for the development of wire and arc…

Abstract

Purpose

Once an uneven substrate is aligned, traditional control theories and methods can be used on it, so aligning is of great significance for the development of wire and arc additive manufacturing (WAAM). This paper aims to propose a shape-driven control method for aligning a substrate with slopes to expand the application of WAAM.

Design/methodology/approach

A substrate with slopes must be aligned by depositing weld beads with slopes. First, considering the large height differences of slopes, multi-layer deposition is needed, and the number of layer of weld beads must be ascertained. Second, the change in the deposition rate is controlled as a ramp function to generate weld beads with slopes. Third, the variation of the deposition rate must be fine-tuned to compensate for the deviation between the actual and theoretical layer heights at the deposition of each layer. Finally, the parameters of the ramp functions at the deposition of each layer are determined through an optimization method.

Findings

First, to model the response function of layer height to deposition rate, the experiments are conducted with the deposition rate jumping from 4 to 8 mm/s and from 8 to 4 mm/s. When the deposition rate jumps from 4 to 8 mm/s and from 8 to 4 mm/s, the difference in the height of each layer decreases as the number of layer increases. Second, the variation of the deposition rate can be fine-tuned based on the deviation between the measured and theoretical layer heights because the variation of the deposition rate is proportional to the layer height when the initial and end deposition rates are near 4 or 8 mm/s, respectively. Third, the experimental results demonstrate that the proposed method is effective for single-layer aligning and aligning a substrate with one or more slopes.

Originality/value

The proposed method can expand the application of WAAM to an uneven substrate with slopes and lays the foundation for aligning tasks focused on uneven substrates with more complex shapes.

Details

Rapid Prototyping Journal, vol. 25 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Mohamed A. Eldakroury, Niechen Chen and Matthew C. Frank

This study aims to introduce a new method for locating candidate substrates in part models and evaluating their feasibility.

Abstract

Purpose

This study aims to introduce a new method for locating candidate substrates in part models and evaluating their feasibility.

Design/methodology/approach

Slices of an STL model along candidate directions are evaluated for the fitting of regular cylindrical and rectangular stock. Next, the part model is skeletonized and tested for collision assuming deposition growth of features from the candidate substrate.

Findings

The method is successfully able to find feasible substrates and conduct collision simulation for a variety of part models.

Research limitations/implications

The algorithm is limited to cylindrical and rectangular substrates and only considers collision between the substrate and the deposition head.

Originality/value

This method represents a new approach to solving a portion of the hybrid manufacturing process planning problem.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Grzegorz Tomaszewski, Jerzy Potencki and Tadeusz Wałach

This paper aims to study the packing density of printed paths on different substrate materials. It presents problems which appear when the necessity of printing one or…

Abstract

Purpose

This paper aims to study the packing density of printed paths on different substrate materials. It presents problems which appear when the necessity of printing one or more narrow paths occurs.

Design/methodology/approach

A piezoelectric printhead containing nozzles with a diameter of 35 µm was used for printing nanoparticle silver ink on different polymer substrates which were treated by plasma or not treated at all. The shape, defects, resistance and printing parameters for the printed paths were analysed.

Findings

The obtained results allow the identification of the sources of the technological problems in obtaining a high packing density of the paths in a small area of substrate and the repeatable prints.

Research limitations/implications

The study could have limited universality because of the chosen research method; printhead, ink, substrate materials and process parameters were arbitrarily selected. The authors encourage the study of other kinds of conductive inks, treatment methods and printing process parameters.

Practical implications

The study includes practically useful information about widths, shapes, defects and the resistance of the paths printed using different technological parameters.

Originality/value

The study presents the results of original empirical research on problems of the packing density of inkjet printed paths on a small area of substrate and identifies problems that must be resolved to obtain effective interconnections in the inkjet technology.

Details

Circuit World, vol. 44 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

To view the access options for this content please click here
Article

Riyaz Ali Shaik and Elizabeth Rufus

This paper aims to review the shape sensing techniques using large area flexible electronics (LAFE). Shape perception of humanoid robots using tactile data is mainly focused.

Abstract

Purpose

This paper aims to review the shape sensing techniques using large area flexible electronics (LAFE). Shape perception of humanoid robots using tactile data is mainly focused.

Design/methodology/approach

Research papers on different shape sensing methodologies of objects with large area, published in the past 15 years, are reviewed with emphasis on contact-based shape sensors. Fiber optics based shape sensing methodology is discussed for comparison purpose.

Findings

LAFE-based shape sensors of humanoid robots incorporating advanced computational data handling techniques such as neural networks and machine learning (ML) algorithms are observed to give results with best resolution in 3D shape reconstruction.

Research limitations/implications

The literature review is limited to shape sensing application either two- or three-dimensional (3D) LAFE. Optical shape sensing is briefly discussed which is widely used for small area. Optical scanners provide the best 3D shape reconstruction in the noncontact-based shape sensing; here this paper focuses only on contact-based shape sensing.

Practical implications

Contact-based shape sensing using polymer nanocomposites is a very economical solution as compared to optical 3D scanners. Although optical 3D scanners can provide a high resolution and fast scan of the 3D shape of the object, they require line of sight and complex image reconstruction algorithms. Using LAFE larger objects can be scanned with ML and basic electronic circuitory, which reduces the price hugely.

Social implications

LAFE can be used as a wearable sensor to monitor critical biological parameters. They can be used to detect shape of large body parts and aid in designing prosthetic devices. Tactile sensing in humanoid robots is accomplished by electronic skin of the robot which is a prime example of human–machine interface at workplace.

Originality/value

This paper reviews a unique feature of LAFE in shape sensing of large area objects. It provides insights from mechanical, electrical, hardware and software perspective in the sensor design. The most suitable approach for large object shape sensing using LAFE is also suggested.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article

Chongxu Liu and Youdong Chen

The glass substrate transfer robot uses flexible arm and fork to transport the glass substrate which will generate vibration. To reduce the settling time and increase…

Abstract

Purpose

The glass substrate transfer robot uses flexible arm and fork to transport the glass substrate which will generate vibration. To reduce the settling time and increase productivity, the authors proposed a vibration suppression method that integrated the continuous input shaping into the S-curve feedrate profiling.

Design/methodology/approach

The quasi-optimal S-curve feedrate profiling is achieved by the robot model. Then the outputs of the S-curve are shaped by the continuous input shaper, which can greatly lower the vibration and shorten the settling time.

Findings

The robot produces vibrations because of the flexibility of the belt system and the forks; the vibration of the robot is especially obvious in the acceleration and deceleration stage and the low-speed operation stage. Because the fork fingers are flexible, vibration at the end of the fork is enlarged.

Originality/value

The effectiveness of the proposed method is verified by the comparative experiments conducted on a glass substrate transfer robot.

Details

Industrial Robot: An International Journal, vol. 45 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article

Sudipta Roy

The purpose of the paper is to present an update and the latest results from work on a project which could be useful for maskless printed circuit board (PCB) manufacturing.

Abstract

Purpose

The purpose of the paper is to present an update and the latest results from work on a project which could be useful for maskless printed circuit board (PCB) manufacturing.

Design/methodology/approach

Copper is plated and etched using a novel electrochemical technique, electrochemical patterning by flow and chemistry, using a masked tool and fully exposed substrate. The micro patterns on the tool are replicated on the substrate via optimum design of the apparatus, choice of electrolyte chemistry and fluid flow.

Findings

Linear and square shapes ranging from 5 to 200 μm are transferred using the technique by electrochemical plating and etching. Up to 25 substrates could be processed using a single tool, which indicates that photolithography requirements can be greatly minimised.

Research limitations/implications

The copper lines are transferred to relatively small substrates. The process needs to be scaled up to accommodate larger substrates in order to fully exploit its potential for PCBs.

Originality/value

The paper presents a fundamentally different approach to transfer micron scale pattern using a maskless technology. The platform technology involves using a mask to pattern each substrate; this work shows that micron scale patterns can be transferred without masking by optimising electrochemical reactor technology.

Details

Circuit World, vol. 35 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

To view the access options for this content please click here
Article

Wenchao Zhou, Drew Loney, Andrei G. Fedorov, F. Levent Degertekin and David W. Rosen

– The aim of this paper is to advance the understanding of the droplet deposition process to better predict and control the manufacturing results for ink-jet deposition.

Abstract

Purpose

The aim of this paper is to advance the understanding of the droplet deposition process to better predict and control the manufacturing results for ink-jet deposition.

Design/methodology/approach

As material interface has both geometric and physical significance to manufacturing, the approach the authors take is to study the interface evolution during the material joining process in ink-jet deposition using a novel shape metric and a previously developed powerful simulation tool. This tool is an experimentally validated numerical solver based on the combination of the lattice Boltzmann method and the phase-field model that enabled efficient simulation of multiple-droplet interactions in three dimensions.

Findings

The underlying physics of two-droplet interaction is carefully examined, which provides deep insights into the effects of the printing conditions on the interface evolution of multiple-droplet interaction. By studying line printing, it is found that increasing impact velocity or decreasing fluid viscosity can reduce manufacturing time. For array printing, the authors have found the issue of air bubble entrapment that can lead to voids in the manufactured parts.

Research limitations/implications

The array of droplets impinges simultaneously, in contrast to most ink-jet printers. Sequential impingement of lines of droplet needs to be studied. Also, impingement on non-planar surfaces has not been investigated yet, but is important for additive manufacturing. Finally, it is recognized that the droplet hardening mechanisms need to be incorporated in the simulation tool to predict and control the final shape and size of the arbitrary features and manufacturing time for ink-jet deposition.

Practical implications

The research findings in this paper imply opportunities for optimization of printing conditions and print head design. Furthermore, if precise droplet control can be achieved, it may be possible to eliminate the need for leveling roller in the current commercial printers to save machine and manufacturing cost.

Originality/value

This work represents one of the first attempts for a systematic study of the interface dynamics of multiple-droplet interaction in ink-jet deposition enabled by the novel shape metric proposed in the paper and a previously developed numerical solver. The findings in this paper advanced the understanding of the droplet deposition process. The physics-based approach of analyzing the simulation results of the interface dynamics provides deep insights into how to predict and control the manufacturing relevant outcomes, and optimization of the deposition parameters is made possible under the same framework.

Details

Rapid Prototyping Journal, vol. 21 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

To view the access options for this content please click here
Article

Robert Kay and Marc Desmulliez

The purpose of this paper is to present a detailed overview of the current stencil printing process for microelectronic packaging.

Abstract

Purpose

The purpose of this paper is to present a detailed overview of the current stencil printing process for microelectronic packaging.

Design/methodology/approach

This paper gives a thorough review of stencil printing for electronic packaging including the current state of the art.

Findings

This article explains the different stencil technologies and printing materials. It then examines the various factors that determine the outcome of a successful printing process, including printing parameters, materials, apparatus and squeegees. Relevant technical innovations in the art of stencil printing for microelectronics packaging are examined as each part of the printing process is explained.

Originality/value

Stencil printing is currently the cheapest and highest throughput technique to create the mechanical and electrically conductive connections between substrates, bare die, packaged chips and discrete components. As a result, this process is used extensively in the electronic packaging industry and therefore such a review paper should be of interest to a large selection of the electronics interconnect and assembly community.

Details

Soldering & Surface Mount Technology, vol. 24 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of over 3000