Search results

1 – 10 of over 10000
Article
Publication date: 14 June 2011

Zhaoli Wang, Yueqi Zhong and Shanyan Wang

The purpose of this paper is to show how shape analysis and quantitative characterization of fiber cross sections, with the aid of image analysis techniques, provide a quick…

Abstract

Purpose

The purpose of this paper is to show how shape analysis and quantitative characterization of fiber cross sections, with the aid of image analysis techniques, provide a quick, powerful approach to automated profiled fiber identification.

Design/methodology/approach

In this paper, an effective method of cross‐sectional shape characterization for profiled fiber identification is reported with extraction of the distance fluctuation curve of fiber cross‐sectional boundary to the centroid. By calculating their cross‐correlations using signal processing techniques, the authors tackle the problem of calibrating the starting points of fiber objects orientated arbitrarily in image successfully, which are difficult to deal with by means of image processing, to finish the normalization of distance fluctuation curves. For two fiber cross‐sections, the similarity degree of their boundary fluctuation curves normalized can effectively reflect the similarity degree of themselves.

Findings

Based on this, the method presented extracts the curves of all fiber cross‐sections in one sample, compares the similarity degrees between each other, and creates clusters to identify profiled fiber.

Originality/value

Experimental results validate that this curve can effectively characterize profiled fiber cross‐sectional contour for profiled fiber identification and the normalization method is feasible.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 2/3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 October 2018

Carlos Alejandro Garcia Rosales, Hoejin Kim, Mario F. Garcia Duarte, Luis Chavez, Mariana Castañeda, Tzu-Liang Bill Tseng and Yirong Lin

Shape memory polymer (SMP) is capable of recovering its original shape from a high degree of deformation by applying an external stimulus such as thermal energy. This research…

Abstract

Purpose

Shape memory polymer (SMP) is capable of recovering its original shape from a high degree of deformation by applying an external stimulus such as thermal energy. This research presents an integration of two commercial SMP materials (DiAPLEX and Tecoflex) and a material extrusion (ME) printer to fabricate SMP parts and specimens. The material properties such as Young’s modulus of the specimens was examined as a process output. Furthermore, stress-strain curve, strain recovery, instant shape-fixity ratio, long-term shape-fixity ratio and recovery ratio of SMP specimens during a thermo-mechanical cycle were investigated.

Design/methodology/approach

The ME fabrication settings for the SMP specimens were defined by implementing a design of experiments with temperature, velocity and layer height as process variables.

Findings

It was found, according to main effect and iteration plots, that fabrication parameters have an impact on Young’s modulus and exist minimum iteration among variables. In addition, Young’s modulus variation of DiAPLEX and Tecoflex specimens was mostly caused by velocity and layer height parameters, respectively. Moreover, results showed that SMP specimens were able to recover high levels of deformation.

Originality/value

This paper is a reference for process control and for rheological properties of SMP parts produced by ME fabrication process.

Details

Rapid Prototyping Journal, vol. 25 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 March 2015

Jean-Philippe Pernot, Franca Giannini and Cédric Petton

The purpose of this paper is to focus on the characterization and classification of parts with respect to the meshing issue, and notably the meshing of thin parts difficulty…

272

Abstract

Purpose

The purpose of this paper is to focus on the characterization and classification of parts with respect to the meshing issue, and notably the meshing of thin parts difficulty handled automatically and which often requires adaptation steps. The objective is to distinguish the so-called thin parts and parts with thin features from the other parts.

Design/methodology/approach

The concepts of thin part and part with thin features are introduced together with the mechanisms and criteria used for their identification in a CAD models database. The criteria are built on top of a set of shape descriptors and notably the distance distribution which is used to characterize the thickness of the object. To speed up the identification process, shape descriptors are computed from tessellated parts.

Findings

A complete modular approach has been designed. It computes shape descriptors over parts stored in a directory and it uses criteria to distinguish three categories: thin parts, parts with thin features and other parts. Being the three categories identified, the user can spend more time on the parts that are considered as more difficulty meshable.

Research limitations/implications

The approach is limited to the three above mentioned categories. However, it has been designed so that the values corresponding to the shape descriptors and associated meshing qualities can easily be inserted within a machining learning tool later on.

Practical implications

The use of the developed tool can be seen as a pre-processing step during the preparation of finite element (FE) simulation models. It is automatic and can be run in batch and in parallel.

Originality/value

The approach is modular, it is simple and easy to implement. Categories are built on top of several shape descriptors and not on a unique signature. It is independent of the CAD modeler. This approach is integrated within a FE simulation model preparation framework and help engineers anticipating difficulties when meshing CAD models.

Article
Publication date: 26 March 2024

Cong Ding, Zhizhao Qiao and Zhongyu Piao

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Abstract

Purpose

The purpose of this study is to design and process the optimal V-shaped microstructure for 7075 aluminum alloy and reveal its wear resistance mechanism and performance.

Design/methodology/approach

The hydrodynamic pressure lubrication models of the nontextured, V-shaped, circular and square microtextures are established. The corresponding oil film pressure distributions are explored. The friction and wear experiments are conducted on a rotating device. The effects of the microstructure shapes and sizes on the wear mechanisms are investigated via the friction coefficients and surface morphologies.

Findings

In comparison, the V-shaped microtexture has the largest oil film carrying capacity and the lowest friction coefficient. The wear mechanism of the V-shaped microtexture is dominated by abrasive and adhesive wear. The V-shaped microtexture has excellent wear resistance under a side length of 300 µm, an interval of 300 µm and a depth of 20 µm.

Originality/value

This study is conductive to the design of wear-resistant surfaces for friction components.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 16 January 2020

Yongkun Wang, Yuting Zhang, Jinhua Zhang, Junjue Ye and Wenchao Tian

The purpose of this paper is to study the influence of calcium sulfate whiskers (CSWs) on the thermodynamic properties and shape memory properties of epoxy/cyanate ester shape

Abstract

Purpose

The purpose of this paper is to study the influence of calcium sulfate whiskers (CSWs) on the thermodynamic properties and shape memory properties of epoxy/cyanate ester shape memory composites.

Design/methodology/approach

To improve the mechanical properties of shape memory cyanate ester (CE)/epoxy polymer (EP) resin, high performance CSWs were used to reinforce the thermo-induced shape memory CE/EP composites and the shape memory CSW/CE/EP composites were prepared by molding. The effect of CSW on the mechanical properties and shape memory behavior of shape memory CE/EP composites was investigated.

Findings

After CSW filled the shape memory CE/EP composites, the bending strength of the composites is greatly improved. When the content of CSW is 5 Wt.%, the bending strength of the composite is 107 MPa and the bending strength is increased by 29 per cent compared with bulk CE/EP resin. The glass transition temperature and storage modulus of the composites were improved in CE/EP resin curing system. However, when the content of CSW is more than 10 Wt.%, clusters are easily formed between whiskers and the voids between whiskers and matrix increase, which will lead to the decrease of mechanical properties of composites. The results of shape memory test show that the shape memory recovery time of the composites decreases with the decrease of CSW content at the same temperature. In addition, the shape recovery ratio of the composites decreased slightly with the increase of the number of thermo-induced shape memory cycles.

Research limitations/implications

A simple way for fabricating thermo-activated SMP composites has been developed by using CSW.

Originality/value

The outcome of this study will help to fabricate the SMP composites with high mechanical properties and the shape memory CSW/CE/EP composites are expected to be used in space deployable structures.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 January 2014

Haibao Lu, Yongtao Yao and Long Lin

This article aims to present a systematic and up-to-date account of carbon-based reinforcements, including carbon nanotube (CNT), carbon nanofibre (CNF), carbon black (CB), carbon…

1633

Abstract

Purpose

This article aims to present a systematic and up-to-date account of carbon-based reinforcements, including carbon nanotube (CNT), carbon nanofibre (CNF), carbon black (CB), carbon fibre (CF) and grapheme, in shape-memory polymer (SMP) for electrical actuation.

Design/methodology/approach

Studies exploring carbon-based reinforcement in SMP composites for electrically conductive performance and Joule heating triggered shape recovery have been included, especially for the principle design, characterisation and shape recovery behaviour, making the article a comprehensive account of the systemic progress in SMP composite incorporating conductive carbon reinforcement.

Findings

SMPs are fascinating materials and have attracted great academic and industrial attention owing to their significant macroscopic shape deformation in the presence of an appropriate stimulus. The working mechanisms, the physico requirements and the theoretical origins of the different types of carbon-based reinforcement SMP composites have been discussed. Current research and development on the fabrication strategies of carbon-based reinforcement SMP composites have been summarised.

Research limitations/implications

A systematic review is to evaluate carbon-based reinforcements in SMPs for electrical actuation and discuss recent developments and future applications.

Practical implications

Carbon-based reinforcements in SMPs can be used as smart deployable space structure in the broad field of aerospace technologies.

Originality/value

To reveal the research and development of utilising CNT, CNF, CB, CF and grapheme to achieve shape recovery of SMP composites through electrically resistive heating, which will significantly benefit the research and development of smart materials and systems.

Details

Pigment & Resin Technology, vol. 43 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 2024

Asif Ur Rehman, Pedro Navarrete-Segado, Metin U. Salamci, Christine Frances, Mallorie Tourbin and David Grossin

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective…

Abstract

Purpose

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective laser sintering (SLS), a dynamic three-dimensional computational model was developed to forecast thermal behavior of hydroxyapatite (HA) bioceramic.

Design/methodology/approach

AM has revolutionized automotive, biomedical and aerospace industries, among many others. AM provides design and geometric freedom, rapid product customization and manufacturing flexibility through its layer-by-layer technique. However, a very limited number of materials are printable because of rapid melting and solidification hysteresis. Melting-solidification dynamics in powder bed fusion are usually correlated with welding, often ignoring the intrinsic properties of the laser irradiation; unsurprisingly, the printable materials are mostly the well-known weldable materials.

Findings

The consolidation mechanism of HA was identified during its processing in a ceramic SLS device, then the effect of the laser energy density was studied to see how it affects the processing window. Premature sintering and sintering regimes were revealed and elaborated in detail. The full consolidation beyond sintering was also revealed along with its interaction to baseplate.

Originality/value

These findings provide important insight into the consolidation mechanism of HA ceramics, which will be the cornerstone for extending the range of materials in laser powder bed fusion of ceramics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2018

Yongkun Wang, Tianran Ma, Wenchao Tian, Junjue Ye, Xing Wang and Xiangjun Jiang

The purpose of this paper is to prepare novel electroactive shape memory nanocomposites based on graphene and study the thermomechanical property and shape memory behavior of…

Abstract

Purpose

The purpose of this paper is to prepare novel electroactive shape memory nanocomposites based on graphene and study the thermomechanical property and shape memory behavior of nanocomposites.

Design/methodology/approach

Graphene was dispersed in N,N-dimethylformamide, and the mixture was spooned into epoxy-cyanate ester mixtures to form graphene/epoxy-cyanate ester nanocomposites. The nanocomposites were deformed under 150°C, and shape recovery test was conducted under an electric voltage of 20-100 V.

Findings

Graphene is used to improve the shape recovery behavior and performance of shape-memory polymers (SMPs) for enhanced electrical actuation effectiveness. With increment of graphene content, the shape recovery speed of nanocomposites increases significantly.

Research limitations/implications

A simple way for fabricating electro-activated SMP nanocomposites has been developed by using graphene.

Originality/value

The outcome of this study will help to fabricate the SMP nanocomposites with high electrical actuation effectiveness and improve the shape recovery speed of the nanocomposites.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 June 2015

Wenchao Zhou, Drew Loney, Andrei G. Fedorov, F. Levent Degertekin and David W. Rosen

– The aim of this paper is to advance the understanding of the droplet deposition process to better predict and control the manufacturing results for ink-jet deposition.

Abstract

Purpose

The aim of this paper is to advance the understanding of the droplet deposition process to better predict and control the manufacturing results for ink-jet deposition.

Design/methodology/approach

As material interface has both geometric and physical significance to manufacturing, the approach the authors take is to study the interface evolution during the material joining process in ink-jet deposition using a novel shape metric and a previously developed powerful simulation tool. This tool is an experimentally validated numerical solver based on the combination of the lattice Boltzmann method and the phase-field model that enabled efficient simulation of multiple-droplet interactions in three dimensions.

Findings

The underlying physics of two-droplet interaction is carefully examined, which provides deep insights into the effects of the printing conditions on the interface evolution of multiple-droplet interaction. By studying line printing, it is found that increasing impact velocity or decreasing fluid viscosity can reduce manufacturing time. For array printing, the authors have found the issue of air bubble entrapment that can lead to voids in the manufactured parts.

Research limitations/implications

The array of droplets impinges simultaneously, in contrast to most ink-jet printers. Sequential impingement of lines of droplet needs to be studied. Also, impingement on non-planar surfaces has not been investigated yet, but is important for additive manufacturing. Finally, it is recognized that the droplet hardening mechanisms need to be incorporated in the simulation tool to predict and control the final shape and size of the arbitrary features and manufacturing time for ink-jet deposition.

Practical implications

The research findings in this paper imply opportunities for optimization of printing conditions and print head design. Furthermore, if precise droplet control can be achieved, it may be possible to eliminate the need for leveling roller in the current commercial printers to save machine and manufacturing cost.

Originality/value

This work represents one of the first attempts for a systematic study of the interface dynamics of multiple-droplet interaction in ink-jet deposition enabled by the novel shape metric proposed in the paper and a previously developed numerical solver. The findings in this paper advanced the understanding of the droplet deposition process. The physics-based approach of analyzing the simulation results of the interface dynamics provides deep insights into how to predict and control the manufacturing relevant outcomes, and optimization of the deposition parameters is made possible under the same framework.

Details

Rapid Prototyping Journal, vol. 21 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 May 2015

Haibao Lu, Yongtao Yao, Shipeng Zhu, Yunhua Yang and Long Lin

The purpose of this paper is a study aimed at overcoming the interface issue between nanopaper and polymer matrix in shape-memory polymer (SMP) composite laminates caused by their…

Abstract

Purpose

The purpose of this paper is a study aimed at overcoming the interface issue between nanopaper and polymer matrix in shape-memory polymer (SMP) composite laminates caused by their large dissimilarity in electrical/thermal conductive properties. The study attempted to develop an effective approach to fabricate free-standing carbon nanofibre (CNF) assembly in octagon shape formation. The structure design and thermal conductive performance of the resulting octagon-shaped CNF assembly were optimised and simulated.

Design/methodology/approach

The CNF nanopaper was prepared based on a filtration method. The SMP nanocomposites were fabricated by incorporating these CNF assemblies with epoxy-based SMP resin by a resin-transfer modelling technique. Thermal conductivity of the octagon-shaped CNF assembly was simulated using the ANSYS FLUENT software for structure design and optimisation. The effect of the octagon-shaped CNF on the thermomechanical properties and thermally responsive shape-memory effect of the resulting SMP nanocomposites were characterised and interpreted.

Findings

The CNF template incorporated with SMP to achieve Joule heating triggered shape recovery at a low electric voltage of 3-10 V, due to which the electrical resistivity of SMP nanocomposites was significantly improved and lowered to 0.20 O·cm by the CNF template. It was found that the octagon CNF template with 2 mm width of skeleton presented a highest thermally conductive performance to transfer resistive heat to the SMP matrix.

Research limitations/implications

A simple way for fabricating electro-activated SMP nanocomposites has been developed by using an octagon CNF template. Low electrical voltage actuation in SMP has been achieved.

Originality/value

The fabricated CNF template, the structure design and analysis of dynamic thermomechanical properties of SMP are novel.

Details

Pigment & Resin Technology, vol. 44 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 10000